Theory of Computing ------------------- Title : Quantum Fan-out is Powerful Authors : Peter Hoyer and Robert Spalek Volume : 1 Number : 5 Pages : 81-103 URL : https://theoryofcomputing.org/articles/v001a005 Abstract -------- We demonstrate that the unbounded fan-out gate is very powerful. Constant-depth polynomial-size quantum circuits with bounded fan-in and unbounded fan-out over a fixed basis (denoted by $\QNCwf^0$) can approximate with polynomially small error the following gates: parity, mod[q], And, Or, majority, threshold[t], exact[t], and Counting. Classically, we need logarithmic depth even if we can use unbounded fan-in gates. If we allow arbitrary one-qubit gates instead of a fixed basis, then these circuits can also be made exact in log-star depth. Sorting, arithmetic operations, phase estimation, and the quantum Fourier transform with arbitrary moduli can also be approximated in constant depth.