THEORY OF COMPUTING, Volume 2 (2006), pp. 147-172
http://theoryofcomputing.org

On Learning Random DNF Formulas Under
the Uniform Distribution

Jeffrey C. Jackson Rocco A. Servedio

Received: March 21, 2006; published: September 19, 2006.

Abstract: We study the average-case learnability of DNF formulas in the model of learn-
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learn, for any fixed constant> 0, a randont-term monotone DNF for anty= O(n?~7).

We also define a model of random non-monotone DNF and give an efficient algorithm
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1 Introduction

1.1 Motivation and background

A disjunctive normal fornformula, or DNF, is an AND of ORs of Boolean literals. A question that has
been open since Valiant's initial paper on computational learning th@étyq whether or not efficient
algorithms exist for learning polynomial size DNF formulas in variants of the PAC (Probably Approx-
imately Correct) learning model introduced by Valiant. Roughly speaking, in these models a learning
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algorithm is required to generate a high-accuracy (error rate at ehdstpothesis with high probabil-

ity (the algorithm must fail to generate such a hypothesis with probability at &jopste give a more
detailed explanation of our learning scenari&iection2. The only positive result for learning general
DNF formulas in such frameworks to date is the Harmonic Si&2g [The Sieve is a membership-query
algorithm (i.e. it requires black-box query access to the unknown fundtibrat is being learned) that
efficiently PAC learns DNF when the error rate is defined with respect to the uniform distribution over
the space of all possiblebit example strings (and certain related distributions). The approximating hy-
pothesis produced by the Sieve is not itself represented as a DNF; thus, the Sievesoperlearning
algorithm.

There has been little progress on polynomial-time algorithms for learning arbitrary DNF since the
discovery of the Sieve. There are two obvious relaxations of the uniform distribution membership query
model that can be pursued. The first is to learn with respect to arbitrary distributions using membership
gueries; in this setting, the learning algorithm is given black-box (membership query) access to the
unknown functionf, and also access to a source of random labeled exanplé&x)) where each
examplex is independently drawn from a fixed probability distribution which is arbitrary and not known
to the learning algorithm. The learner must generate a high-accuracy hypothesis with respect to this
unknown distribution. Given standard cryptographic assumptions, it is known that learning DNF in
this framework is essentially as difficult as learning DNF with respect to arbitrary distributions without
membership queried].

The second obvious relaxation is to learn with respect to the uniform distribution without member-
ship queries. However, there are substantial known obstacles to learning DNF in the model of uniform
distribution without membership queries. In particular, no algorithm which can be recast as a Statisti-
cal Query algorithm can learn arbitrary polynomial-size DNF under the uniform distributio®'¢A"
time [8]. (Roughly speaking, a Statistical Query algorithm is an algorithm which is only allowed to
obtain statistical estimates of properties of the distribution over labeled exampléx&ips) ); such an
algorithm does not have access to actual labeled exarfplé&)). See [L7] for a detailed description
of the Statistical Query model.) Since nearly all non-membership learning algorithms can be recast as
Statistical Query algorithmsl[], a major conceptual shift seems necessary to obtain an algorithm for
efficiently learning arbitrary DNF formulas from uniform examples alone.

An apparently simpler question is whetireonotoneDNF formulas, which contain only un-negated
variables, can be learned efficiently. Angluin showed that monotone DNF can be properly learned with
respect to arbitrary distributions using membership queBgslI{ has also long been known that with
respect to arbitrary distributions without membership queries, monotone DNF are no easier to learn than
arbitrary DNF [L9]. This leaves the following enticing question (posedlif, [7, 6]): are monotone DNF
efficiently learnable from uniform examples alone?

In 1990, Verbeurgt37] gave an algorithm that can properly learn any gojysize (arbitrary) DNF
from uniform examples in tim@®!°9"_ More recently, the algorithm ofF] learns any 2°9"-term
monotone DNF in polgn) time. However, despite significant interest in the problem, no algorithm faster
than that of £7] is known for learning arbitrary poly)-size monotone DNF from uniform examples,
and no known hardness result precludes such an algorithm (the Statistical Query re8Lis att fits
heart a hardness result for low-degree parity functions, and thus does not apply to monotone DNF).

Since worst-case versions of several DNF learning problems have remained stubbornly open for a
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decade or more, it is natural to ask about DNF learning from an average-case perspective, i.e., about
learningrandom DNF formulas. In fact, this question has been considered before: Aizenstein and
Pitt [1] were the first to ask whether random DNF formulas are efficiently learnable. They proposed
a model of random DNF in which each of the@erms is selected independently at random from all
possible terms, and gave a membership and equivalence query algorithm which with high probability
learns a random DNF generated in this way. (S8ef [3] for a description of the membership and
equivalence query learning framework.) However, as notedl]jra[limitation of this model is that with

very high probability all terms will have lengf@(n). The learning algorithm itself becomes quite simple

in this situation. Thus, while this is a “natural” average-case DNF model, from a learning perspective
it is not a particularly interesting model. To address this deficiency, they also proposed another natural
average-case model which is parameterized by the expected leofylach term as well as the number

of independent termig but left open the question of whether or not random DNF can be efficiently
learned in such a model.

1.2 Our results

We consider an average-case DNF model very similar to the latter Aizenstein and Pitt model, although
we simplify slightly by assuming th&trepresents a fixed term length rather than an expected length. We
show that, in the model of learning from uniform random examples only, random monotone DNF are
properly and efficiently learnable for many interesting valuek afdt. In particular, fort = O(n>~7)

wherey > 0, and fork = logt, our algorithm can achieve any error rate- 0 in poly(n,1/¢) time with

high probability (over both the selection of the target DNF and the selection of examples). In addition,
we obtain slightly weaker results for arbitrary DNF: our algorithm can properly and efficiently learn
randomt-term DNF fort such that = O(n%‘V). This algorithm cannot achieve arbitrarily small error

but can achieve errag = o(1) for anyt = w(1). For detailed result statements see Theor8mS
and4.11

While our results would clearly be stronger if they held for &ry poly(n) rather than the specific
polynomials given, they are a marked advance over the previous state of affairs for DNF learning. (Recall
that in the standard worst-case model, gojytime uniform-distribution learning df(n)-term DNF for
anyt(n) = w(1) is an open problem with an associated cash p&kg [

At this point a word or two is in order to clarify the relationship between the random DNF model we
consider and the models of random CNF formulas that are often studied in the context of the Boolean
satisfiability problem. In the study of randokaCNF formulask is often taken to be a fixed constant
such as 3. In contrast with the satisfiability problem, in the learning arena thkinige a fixed constant
such as 3 is not an interesting choice, since it is well knownkt@F (or equivalently, DNF formulas
in which every term is of length at mok} can be easily learned with respect to any distribution in time
nPk [26]. Intuitively, the “interesting” values ok are different for the satisfiability problem and the
learning problem because in the satisfiability problem the interesting cases occur when there are only a
small number of satisfying assignments, whereas in the learning framework the interesting cases occur
when the target DNFs are roughly balanced between satisfying and unsatisfying assignments. (From
a learning perspective balanced functions are generally more interesting than unbalanced functions,
since a constant function is trivially a good approximator to a highly unbalanced function.) Thus, for
the learning problem, taking = logt is a natural choice when learning with respect to the uniform
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distribution. (We actually allow a somewhat more general choide af is described in detail in the
paper.)

Our results shed some light on which casesraehard to learn in the worst-case uniform distri-
bution model. While “hard” cases were previously known for arbitrary DBFdur findings may be
particularly helpful in guiding future research on monotone DNF. In particular, our algorithm learns any
monotone = O(n>~7)-term DNF which (i) is near-balanced, (i) has every term uniquely satisfied with
reasonably high probability, (iii) has every pair of terms jointly satisfied with much smaller probability,
and (iv) has no variable appearing in significantly more thapgt raction of thet terms (this is made
precise inLemma 3.9. So in order to be “hard,” a monotone DNF must violate one or more of these
criteria.

Our algorithms work in two stages: they first identify pairs of variables which co-occur in some
term of the target DNF, and then use these pairs to reconstruct terms via a specialized clique-finding
algorithm. (This is why our results do not extend to random DNF with more tfahterms; for such
formulas the variable co-occurrence graph is with high probability dense or even complete, so we cannot
reconstruct terms from co-occurrence information.) For monotone DNF we can with high probability
determine for every pair of variables whether or not the pair co-occurs in some term. For non-monotone
DNF, with high probability we can identify most pairs of variables which co-occur in some term; as we
show, this enables us to learn to fairly (but not arbitrarily) high accuracy.

We give preliminaries irBection2. Sections3 and4 contain our results for monotone and non-
monotone DNF respectivelgection5 concludes.

A preliminary version of this work appeared in the proceedings of RANDOM 2085 The current
version of the paper gives a more thorough exposition and includes many proofs that were omitted from
the conference version due to space limitations.

2 Preliminaries

We first describe our models of random monotone and non-monotone DN]V[H_kdjxe the probability
distribution over monotoneterm DNF induced by the following random process: each term is inde-
pendently and uniformly chosen at random from(a)l monotone ANDs of size exactk/over variables
Vi,...,Vn. FOr non-monotone DNF, we writBi* to denote the following distribution ovésterm DNF:
first a monotone DNF is selected fro]vmhk, and then each occurrence of each variable in each term is
independently negated with probability2 (Equivalently, a draw fromD%* is done by independently
selecting terms from the set of all terms of length exadtly

Given a Boolean function : {0,1}" — {0, 1}, we write Pf¢] to denote Rr.y,[¢ (X) = 1], whereU,
denotes the uniform distribution ovéd, 1}". We write log to denote logand In to denote natural log.

2.1 Tail bounds
We use the following:

Chernoff bound (see R, Theorem A.12]): LeB(t, p) denote the binomial distribution with parameter
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p, i.e. a draw fronB(t, p) is a sum ot independenp-biased 0/1 Bernoulli trials. Then fg > 1,

pr (s> pp) < (&2877)" < (e/p)™ .

S~B(t,p)
The following bound will also be useful:

McDiarmid bound [24]: Let X, ... Xy be independent random variables taking values in &xeltet
F: Q™ — R be such that for all E [m] we have

IF (X1, Xm) = F (X1, X1, X1, -, Xm) | < G
for all X1,...,Xxmand ¥ in Q. Letu = E[F(Xy,...,Xm)]. Then for allt > 0,

Pr{|F(Xq,...,Xm) — pt| > 7] < exp(—72/(C +---+C2)) .

2.2 The learning model

In the uniform distribution learning model which we consider, the learner is given a source of labeled
examplegx, f(x)) where eactx is uniformly drawn from{0,1}" and f is the unknown function to be
learned. The goal of the learner is to efficiently construct a hypottmesisich with high probability

(over the choice of labeled examples used for learning) has low error relativeimder the uniform
distribution, i.e. Py, [h(x) # f(x)] < & with probability 1—- 8. This model has been intensively studied

in learning theory, see e.gl], 10, 13, 21, 22, 25, 27]. In our average case framework, the target function

f will be drawn randomly from eithe]v[%k or Dtn’k, and (as in 14]) our goal is to construct a low-error
hypothesis for f with high probability over both the random examples used for learning and the random
draw of f.

3 Learning random monotone DNF

3.1 Interesting parameter settings

Consider a random draw df from M. It is intuitively clear that ift is too large relative ti then a
randomf € M5 will likely have Pr{f] ~ 1; similarly if t is too small relative td then a randonf € MK

will likely have Prif] =~ 0. Such cases are not very interesting from a learning perspective since a trivial
algorithm can learn to high accuracy. We are thus led to the following definition:

Definition 3.1. A pair of values(k,t) is said to benonotonex-interestingif
o <E;  e[Pfl]<1-o .

Throughout the paper we will assume that @ < .09 is a fixed constant independentdnd that
t < p(n), wherep(-) is a fixed polynomial (and we will also make assumptions about the degmge of
The following lemma gives necessary conditions(fot) to be monotoner-interesting. (Ademma 3.2
indicates, we may always think &fas being roughly loty)
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Lemma 3.2. For n sufficiently large, ifk,t) is monotonex-interesting thero2k <t < 2<t1|n 2,

Proof. One side is easy: tf< a2X then each of theterms off is satisfied by a uniform random example
with probability at mostx /t, and consequently Fi(x) = 1] < a. Note that by our assumptions band

o we thus have th& = O(logn) for any monotonex-interesting paifk,t).

We now show that if > 2¢1log 2, then

Etengk[PIfl]>1—0 .

Let us write|x| to denotex; + - -- + Xy for x € {0,1}". It is easy to see that Fir(x) = 1], viewed as a
random variable over the choice bk M5, depends only on the value pf. We have

Eteaex[Pf]] = riEferﬁfk[Pr[f(X> =1|[x|=r]-Prx =r1] .

A standard tail bound on the binomial distribution (which can be derived, e.g., from the res@®)in [

implies that
PUr Dx\ <n/2-— \/nlog(2/a)] <a/2 .
XeUnp
Thus it suffices to show that for amywith |x| > n/2— /nlog(2/a), we have
Pr k[f(x) =1>1-«a/2.

fe

Fix anx € {0,1}" with |[x =w >n/2—y/nlog(2/). Let T; be a random monotone term of length

k. We have
ww—1)---(w—Kk+1) 1

>
nn—1)---(n—k+1) — 2k+1
where the inequality holds for sufficiently largaising the fact thak = O(logn) ando = ©(1). Since
the terms off are chosen independently, this implies that

gqux%:mfs(1—2$4)téexp<é:1)

If t/2€*1 > In 2 then this bound is at most/2. O

AT = 1] =

DNF expressions with either a constant number of terms or a constant number of variables per term
have long been known to be efficiently learnaldig][(this holds for non-monotone as well as monotone
DNF, and in fact holds for learning with respect to arbitrary distributions, not only uniform). So we
will assume throughout that bottandk are(1); many of our probability bounds are only meaningful
given such an assumption, and some of our lemmas explicitly dependratiork being larger than a
certain (small) constant. While this assumption is sufficient for our purposes, we note briefly that in fact
a stronger assumption can be made concemitigt grows very slowly relative ta, say,t = O(n%/4),
then with high probability a randorh drawn frova[tr{k will have the property that every variable fn
appears in exactly one term. Such a read-once DNF, even if it is non-monotone, is learnable with respect
to the uniform distribution18]. Thus, we can actually think dfas growing reasonably quickly witi
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3.2 Properties of random monotone DNF

Throughout the rest dbection3 we assume that > 0 is fixed and(k,t) is a monotonex-interesting
pair wheret = O(n?~7) for somey > 0. In this section we develop some useful lemmas regamihlb

We first prove the following lemma, which will be useful in subsequent proofs. This lemma does
not require thaf be drawn frondvi¥.

Lemma 3.3. Any monotone DNF f witht 2 terms each of size k h&{f] > /4.

Proof. We write Ty, T, ..., T; to denote the terms df. We have

Plf|=P{TLAToA - AT =PH{T | oA T PAT2 | TsA -+ T] - - P{Ti_1 | T| PTy]

> ﬁ Pr{T}] (3.1)

1\! 1\ 272/ a) 1\2n& oan2ind g3
(2)=(2) =) -7

The first inequality 8.1) holds since Fif (x) = 1| g(x) = 1] > Pr{f(x) = 1] for any monotone Boolean
functionsf,gon{0,1}" (see e.g. Corollary 7, p. 149 d]). The second inequality holds themma 3.2
The third inequality holds singd — 1/x)* > 1/4 for allx > 2, and the fourth follows from the restriction
a <.09. d

Let f' denote the projected function obtained frdnby first removing ternfl; from the monotone
DNF for f and then restricting all of the variables which were present in fgrto 1. For/ #i we
write T! to denote the term obtained by setting all variableiito 1 in T,, i.e. T is the term inf!
corresponding td,. Note that ifT; # T, thenT; is smaller thari,.

The following lemma shows that each variable appears in a limited number of terms and that there-
fore not too many term@i in fi are smaller than their corresponding terfasn f. In this and later
lemmas, h sufficiently large” means thatis larger than a constant which dependsobut not onk or
t.

Lemma 3.4. Let
ekt/2logt

For n sufficiently large, with probability at leadt— dmany over the draw of f fromvii<, both of the
following conditions hold:

>2k1a2/(\ﬁlogt)

e Everyvariabley, 1 < j <n, appears in at mo2*~1a?/(y/tlogt) terms of f; and

e Forall 1<i <t at most R 1a?/(y/tlogt) terms T with ¢ # i in the projection f are smaller
than the corresponding termg ih f.

Note that sincek,t) is a monotonex-interesting pair and = O(n>~7) for some fixedy > 0, for
sufficiently largen this probability bound is non-trivial.

THEORY OF COMPUTING, Volume 2 (2006), pp. 147-172 153


http://dx.doi.org/10.4086/toc

J. ACKSON AND R. SERVEDIO

Proof ofLemma 3.4 We first prove that with high probability every variable appears in a limited number
of terms. Fix any variablg;. For each ternT, we have that; occurs inT, with probabilityk/n. Since

the terms are chosen independently, the number of occurrenegsdfinomially distributed according

to B(t, p) with p = k/n. Taking = n2<1a?/(kt®/?logt) in the Chernoff bound (which is greater than

1 for sufficiently largen), the probability that/; appears i pt = 2<1g2/(y/tlogt) or more terms is at

most 2162 Hlogt)
it 04 O
ekt/2logt ?
n2k—1 g2 :
The lemma follows by the union bound over theariablesv;.
For the bound on the number of termsfinsmaller than those ifi, simply note that if every vari-

able appears in at mos{‘*Zaz/(\/Iogt) terms then, since there akevariables in terml;, at most
k2102 /(\/tlogt) termsT, with £ i in f' are smaller than the corresponding teffpg f. O

The next lemma shows that there is probably little overlap between any pair of tefms in

Lemma 3.5. Let Sgpared= t2(1$)'°9'°9t, With probability at least — gharegover the random draw of
f from MK, for all 1 < i,j <tno setofloglogt or more variables belongs to two distinct termsafd
Tjin f.

Proof. We are interested in upper bounding the probabitityhat loglog or more of the variables in
a fixed termT; belonging tof also appear in some other teffnof f, for any ¢ #i. First, a simple
counting argument shows that the probability that a fixed set of Idgiagables appears in a set lof
variables randomly chosen from amomyariables is at mogk/n)'°9'°%. Since there ar(qog'l‘ogt) ways
to choose a fixed set of loglogariables from ternd;, we have

b= <Iogil(ogt) (DIOQIO@ =5

The lemma follows by the union bound over therobabilitiesp;. O

Using the preceding lemmas, we can show thatffairawn fromME¥, with high probability each
term is “uniquely satisfied” by a noticeable fraction of assignments. More precisely, we have:

Lemma 3.6. Let dysat:= dmany+ dshared FOr n sufficiently large and k 5, with probability at least
1-— dysatover the random draw of f fromt¥, f is such that for all i= 1,...,t we have

3

P f{T; is satisfied by x but no othey; & satisfied by x> 20k6+3 .

Proof. Given anf drawn according oty and given any tern; in f, we are interested in the prob-
ability over uniformly drawn instances thatis satisfied andy is not satisfied for all #i. Let T,
represent the formula that is satisfied by an assignmérand only if all of theT, with ¢ £ i are not
satisfied byx. We want a lower bound on

PAT: ATysi] = Pz [ T - PHT
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Since PJT;] = 1/2%, what remains is to show that with very high probability over random draw, of

Pi{T.i | Ti] is bounded below by:3/8 for all Ti. That is, we need to show that[Pi > /8 with very
high probability.

We have that all of the following statements hold with probability at leasb]satfor every 1<i <n
for a randomf from MX:

1. Prfi] > Meesi Pr[T?i]: this follows from Equationg.1) in the proof ofLemma 3.3

2. Memizr, Pi{T}] > a3/4. This holds because the terms in this product are a subset of the terms in
Equation 8.1) (in the proof ofLemma 3.3.

3. Atmostk2“1a?/(1/tlogt) termsT, with £ # i are smaller irf' than they are irf (by Lemma 3.3.
4. No term inf' has fewer thak — loglogt variables (byLemma 3.5.

These conditions together imply that

— (a3 logt | 2/(1ogt ka/2 vk
F’r“'12<4>(<1‘zk> ) |

Note thatka?/2/t < 1/2 for all k > 5, since for suctk we havek?a* < ak?® < a2 <t. Thus, since
(1—;1())(2 1/4 for all x > 2, we have that Pfi] > «3/8. O

On the other hand, we can upper bound the probability that two terms of a randonf BMNFoe
satisfied simultaneously:

Lemma 3.7. With probability at leastl — dgp5regover the random draw of f from(:¥, for all 1 <i <
j <twe havePTi ATj] < 951

Proof. By Lemma 3.5with probability at least & 6gpn4reqf IS Such that, for all KX i < j < n, termsT,
andT; share at most logldgvariables. Thus for each pair of terms a specific set of at ldasi@ylogt
variables must be simultaneously set to 1 in an instance in order for both terms to be satisfied.]

3.3 Identifying co-occurring variables

We now show how to identify pairs of variables that co-occur in some terifn &irst, some notation.
Given a monotone DNF over variabless, ..., v,, define DNF formulag).., gi«, 9«1, andgi1 over
variablesvs, . .., Vv, as follows:

e 0. is the disjunction of the terms ifthat contain neithev; norv,;

e Q1. is the disjunction of the terms if that containv, but notv, (but with v; removed from each
of these terms);

e .1 is defined similarly as the disjunction of the termsfithat containv, but notv; (but with v»
removed from each of these terms);
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e Q11 is the disjunction of the terms ifi that contain bottv; andv, (with both variables removed
from each term).

We thus have = g... V (V101.) V (V20.1) V (V1v2011). Note that any 08..., 91, 9.1, 911 may be an empty
disjunction which is identically false.
We can empirically estimate each of the following using uniform random exar(ylé&x)):

Po = Prig.] = Pr{f(0=1]x=%=0
P = Pg.vgal = Prif(0=1x=0x=1
pio ‘= Prg.Vvow]= Prif(x)=1|x1=1x=0]
X x€Un
P = PG VGaVOLVaul = Prif(x)=1[x=1x=1J.

It is clear thatg;1 is nonempty if and only ifv; andv, co-occur in some term of; thus we would
ideally like to obtain Pgy,[g11]. While we cannot obtain this probability frono, po1, P10, andpia,
the following lemma shows that we can estimate a related quantity:

Lemma 3.8. Let P denote f — p1o— Po1+ Poo- Then P=Prg11 AT, AQ,.1 AD,.] — P01 A Q1 AT,

Proof. P gets a net contribution of 0 from thozevhich belong tag. . (since each suckis added twice
and subtracted twice iR). We proceed to analyze the contributiongtfrom the remaining 8 subsets
of the event®y11, g1, andg,:

e P gets a net contribution of O from thosevhich are ing;. AQ,; AQ,. Since each suckis counted
in p11 and pyp but not inpo; or peo. Similarly P gets a net contribution of 0 from thogevhich
are ing*l A Qpe A Qs

e P gets a net contribution of Rp1 ATy, AT,1 AT,,] Since each suckis counted inpqs.
e P gets a net contribution of Prigi. A 9.1 AT,,] Since each suchkis counted inpo1, P10, andpa .

O]

More generally, leR; be defined a® but with vj, x;, vj, andx; substituted forvy, x1, v, and
X2, respectively, throughout the definitions of tife and p’s above. The reader familiar with Boolean
Fourier analysis will readily recognize thBj is a scaled (by a factor of2) version of the second-
order Fourier coefficient of corresponding to the pair of variableg,v;). (This coefficient is equal to
2Prey, [T (X) =X @] — 1; see R3] for a nice overview of Boolean Fourier analysis in the context of
uniform-distribution learning.) The following lemma shows that, for most random choicésfof all
1 <i, j <n, the value oR; is a good indicator of whether or ngtandv; co-occur in some term of:

Lemma 3.9. For n sufficiently large and & 16, with probability at leastl — dysat— Oshared— dmany

over the random draw of f frofvt;<, we have that for all < i, j <n (i) ifvi and v, do not co-occur in
some term of f thenP< 0; (ii) if vi and v do co-occur in some term of f thep P oc4/16t.
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Proof. Part (i) holds for any monotone DNF thyemma 3.8 For (ii), we first note that with probability
at least - dysat— dshareq— dmany @ randomly chosef has all the following properties:

1. Each term inf is uniquely satisfied with probability at leasg /2“2 (by Lemma 3.;

2. Each pair of termsl; and T; in f are both satisfied with probability at most lv@% (by
Lemma 3.%; and

3. Each variable irf appears in at most2a?/(y/tlogt) terms (byLemma 3.3.

We call such arf well-behavedFor the sequel, assume tifais well-behaved and also assume without
loss of generality that= 1 andj = 2. We consider separately the two probabilities

p1=Pi011ATG1, NG, AT, ]  and  p2=Prgi AGuAD,,]

whose difference define®, = P. By property (1) abovep; > /243, since each instancethat
uniquely satisfies a ter; in f containing bothv; andv, also satisfieg);; while falsifying all of gu.,

0.1, andg... Since(k,t) is monotonex-interesting, this implies that; > a*/8t. On the other hand,
clearly po < Pr{g1. A g.1]. By property (2) above, for any pair of terms consisting of one term from
1. and the other frong,1, the probability that both terms are satisfied is at most j8g. Since each

of g1, andg,1 contains at most21a?/(y/tlogt) terms by property (3), by a union bound we have
p2 < o*/(4tlogt), and the lemma follows:

ot ot o

_ > 7 > 7
pr=pz= 8t 4dtlogt — 1lét

given the assumption that> 16. O

Thus, our algorithm for finding all of the co-occurring pairs of a randomly chosen monotone DNF
consists of estimating; for each of then(n—1)/2 pairs(i, j) so that all of our estimates are—with
probability at leas{1 — §)—uwithin an additive factor ofx*/32t of their true values. Recalling that
eachR; is a scaled version of the second-order Fourier coefficient, by the standard Hoeffding bound a
uniform random sample of siZ®(t?In(n?/§)/a®) is sufficient to estimate all of thg;’s to the specified
tolerance with overall probability at least16. We thus have the following theorem for monotame
interesting(k,t) with t = O(n>~7):

Theorem 3.10. For n sufficiently large and any > 0, with probability at leastl — dysat— Sshared—

Omany— 0 over the choice of f frorM%* and the choice of random examples, our algorithm runs in
O(nt?log(n/§)) time and identifies exactly those paiss, vj) which co-occur in some term of f.

3.4 Forming a hypothesis from pairs of co-occurring variables

Here we show how to construct an accurate DNF hypothesis for a rafdivawn frothr{k.
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Identifying k-cliques. By Theorem 3.10with high probability we have complete information about
which pairs of variablegv;,v;) co-occur in some term of. We thus may consider the gra@hwith
verticesvy, ..., v, and edges for precisely those pairs of varialfles/j) which co-occur in some term
of f. This graph is a union dfrandomly choseR-cliques from{vi, ..., vy} which correspond to the
terms inf; we will call these thef-cliquesof G. Ideally, if we could identify exactly the f-cliques of
G, then we could exactly reconstruict While we do not know how to accomplish this, we do show how
to find a set ok-cliques corresponding to a set of terms whose union closely approxirhates
Specifically, we will show how to efficiently identify (with high probability over the choicd @ind
random examples of) a set ofk-cliques inG that contains as a subset the set of all of theiques in
G. Once thes&-cliques have been identified, as we show later it is easy to construct an accurate DNF
hypothesis forf.
The following lemma shows that with high probability over the choice péach pair(vi,v;) co-
occurs in at most a constant number of terms:

Lemma 3.11. Letéc = (tnL;)C (& is a function of C as well as of t, k, and n) andfix i < j < n. For
any C> 0 and all sufficiently large n, we have

I;’v&k[some pair of variable$v;,v;) co-occur in more than C terms of £ & .
feMy

Proof. For any fixedr € {1,...,t} we have that

kk—1) K2

Prlv; andv; co-occur intermly| = —= < — .
v ) /| n(n—1) — n2

Since these events are independent for athe probability that there is any collection @fterms such
thaty; andv; co-occur in allC of these terms is at most

(9) () =5

By Lemma 3.11we know that, for any given paiw;, v;) of variables, with probability at least-1dc
there are at mostk other variables/, such that(vi,vj,v,) all co-occur in some term of. Suppose
that we can efficiently (with high probability) identify the s&f of all such variables,. Then we can
perform an exhaustive search over(&l-2)-element subse of §; in at most(ik) < (eC)k = nO(logC)
time, and can identify all of the se® such thaS U{v;,v;} is a clique of sizé& in G that includes both
vi andv;. Repeating this over all pairs of variables,v;), we can with high probability identify a set
Gy of k-cliques inG such thatGy contains all of thef-cliques.

Thus, to identifyGy, it remains only to show that for every pair of variablgsandvj, we can
determine the se§; of those variables, that co-occur in at least one term with batrandv;. Assume
that f is such that all pairs of variables co-occur in at mogerms, and lefr be a set of variables of
cardinality at mos€C having the following properties:
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¢ In the projectionfr_o of f in which all of the variables oT are fixed to Ov; andv; do not
co-occur in any term; and

e Forevery sef’ C T such tha{T’| = |T| — 1, v; andv; do co-occur infr/._g.

ThenT is clearly a subset ;. Furthermore, if we can identify all such s@tsthen their union will be
Sj. There are onlyd(n°) possible sets to consider, so our problem now reduces to the following: given
a sefT of at mostC variables, determine whethgrandv; co-occur infr_o.

The proof ofLemma 3.%hows thatf is well-behaved with probability at least1dysat— Sshared—
6many over the choice off. Furthermore, iff is well-behaved then it is easy to see that for every
IT| <C, fr_ois also well-behaved, sinck. g is just f with O(y/t) terms removed (byemma 3.2.

That is, removing terms fronf can only make it more likely that the remaining terms are uniquely
satisfied, does not change the bound on the probability of a pair of remaining terms being satisfied,
and can only decrease the bound on the number of remaining terms in which a remaining variable can
appear. Furthermoréemma 3.8holds for any monotone DNFF. Therefore, iff is well-behaved then

the proof ofLemma 3.9also shows that for everyfT| < C, the R;’s of fr.o can be used to identify

the co-occurring pairs of variables withir._g. It remains to show that we can efficiently simulate a
uniform example oracle fofr_o so that thes&;’s can be accurately estimated.

In fact, for a given sef, we can simulate a uniform example oracle fer_g by filtering the ex-
amples from the uniform oracle fdrso that only examples setting the variable3 ito O are accepted.
Since|T| < C, the filter accepts with constant probability at leagtd A Chernoff argument shows
that if all B;’s are estimated using a single sample of siz&'22In(2(C +2)n®/§) /a8 (filtered appro-
priately when needed) then all of the estimates will have the desired accuracy with probability at least
1-6.

In somewhat more detail, th&-finding algorithm can be written as:

e Given:«t, 7,C, 6

(Note thatf is well-behaved and has the “each pair occurs in at rGotgrms” property with
probability at least - Sysat— Sshared— Smany— éc. So assume this df for the remainder of the
algorithm.)

Draw setSof O(t?log?(n/§)) examples off

For 1< i < j < n (fewer tham? times)

— EstimateR; overS(O(|S) time)
— Add (vi,vj) to the set of co-occurring pairs if estimatBg exceeds the threshotet* / (32t)

For eachT| < C (at mostn® times)

— For each co-occurring pafw;, v;) disjoint fromT (less thartk? times)
(1) EstimateR; over (T — 0)-filteredS(O(|S]) time)
(2) Foreachsubs&’ C T, |T’|=|T|—1 (at mosC times)
() EstimateR;j over (T" — 0)-filteredS(O(|S]) time)
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x Add T to §;j if it passes all threshold tests, i.e. the estimate from (1) is at &£5§82t )
and each estimate from (2)(i) is at mast/(32t) (O(C) time)

e For each co-occurring pai;, v;) (less thartk? times)

— For each(k— 2)-size subsdt) of §j (n°1°9°) times)
x Test if the union ofvi,v;) andU is a clique O(k?) time)

The time bound for this algorithm is then
O(|S| + n?|S| + nCtk2C|S| + tk2nC09C)|2)

which is dominated by the third term@ > 2.
The sample complexityd| is derived as follows. We need a sample large enough to

e succeed for alh? tests for co-occurring pairs (over the full sample), and

e succeed for alh®(C + 1) tests over filtered examples.

The total number of tests i > 2 is bounded byO((C + 2)n®). Recalling that our estimates need
to be accurate to within an additive factor @f /32t, we see that if all tests are run over samples of
sizem = 2t2In(2(C + 2)n®/§)/a® then, by Hoeffding and the union bound, all tests succeed with
probability at least +- /2.

We want|S| large enough so that alC + 1)n® filtered samples will be of sizen with probability
1-6/2. If afilter accepts with probabilitp over a sample of sizen2/ p, then the probability that fewer
thanmexamples are accepted is at mest/4 by Chernoff. Using thengiven in the previous paragraph
and the union bound, it can be seen that choo$hg 2m/p gives us the desired probability of success
over all tests.

Thus, since we are using= 1/2C in the filtering, the final time bound of the algorithm becomes
(for arbitraryC > 2) O((2n)“t3k?log(Cr/§)). This gives us the following:

Theorem 3.12. For n sufficiently large, anyy > 0, and any fixed C 2, with probability at least
1— dusat— Oshared— dmany— éc — & over the random draw of f fromv5¥ and the choice of random
examples, a set@ontaining all of the f-cliques of G can be identified in tif®%t3k?log(n/§).

The main learning result for monotone DNF From Gy we construct in the obvious way a list
T/,..., T (with N = |G| = O(n%)) of lengthk monotone terms that contains ettue termsTy, ..., T; of
f. Now note that the target functiohis simply an OR of some subset of thé$évariables”Ty, ..., Ty,
so the standard elimination algorithm for PAC learning disjunctions (under any distribution) can be used
to PAC learn the target function. The algorithm requi@é$1/¢)log(1/0) + N/€) examples and runs
in time which is linear in its sample size; see e.g. Chapters 1 andZ0pf [

Call the above described entire learning algorithnin summary, we have proved the following:

Theorem 3.13.Fix y, & > 0and C> 2. Let(k,t) be a monotone-interesting pair. For ang >0, > 0,
and t= O(n?""), algorithm A will with probability at leasl. — Sysat— Sshareq— Smany— & — & (over
the random choice of DNF fromt; and the randomness of the example oracle) produce a hypothesis

h that e-approximates the target with respect to the uniform distribution. Algorithm A runs in time
polynomial in njog(1/8), and1/e.
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4 Non-monotone DNF

4.1 Interesting parameter settings

As with M5¥ we are interested in pait&,t) for which E

tepik[Prf]] is betweero and 1— or:
Definition 4.1. Fora > 0, the pair(k, ) is said to bex-interestingif o <E;_c[Prf]] <1—a.
For any fixedx € {0,1}" we have
1 t 1 t
felgﬁk[f(x) =0=(1- ?) , andthus  E_u[Pr{f]] =1~ (1- ?)

by linearity of expectation; this formula will be useful later.

Throughout the rest dbection4 we assume that > 0 is fixed and(k,t) is an a-interesting pair
wheret = O(n%2-7) for somey > 0.
4.2 Properties of random DNF

In this section we develop analogues of Lemr8asand3.7 for Dtn’k. TheDtn’k analogue of.emma 3.7
follows directly from the proof of.emma 3.7 and we have:

Lemma 4.2. With probability at leastl — dgpgregover the random draw of f fro®¥, forall 1 <i <
j <n,P{T AT <%

In the following lemma we use McDiarmid’s bound to prov@hk version ofLemma 3.6

Lemma 4.3. Let

2 loglo —a?
Usat =t (“‘”(kn)l ’ gt+exp<16ln2(27at)|092t>>

With probability at leasi — §/,54 @ random f drawn fronDR is such that for each+1,...,t, we have

P= er[Ti is satisfied by x but no othey; T satisfied by x> % .
Proof. We show thaPy > «/2¢"1 with probability at least - §,g4/t; the lemma follows by a union
bound. We first show thﬁfern,k[Pl] > a/zk. For any fixedk € T;, we have
PAT2(X) A------ AT =(1-279"t s 1-27K >«

where the last inequality holds sinflet) is a-interesting. Since a % fraction of allx € {0,1}" belong

to Ty, by linearity of expectation we hag, eDtn.k[Pl] > o/ 2K,
Now we show that with high probability the deviation I8f from its expected value is low. Given

any fixed lengthk term Ty, let Q denote the set of all lengthtermsT which satisfy PfTy A T] <

(logt)/2%. By reasoning as in the proof demma 4.2 with probability at least 1 (t — 1)(*)lgloat
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each ofT, ..., T; belongs td, so we henceforth assume that this is in fact the case, i.e. we condition on
the even{T,,..., Tt} C Q. Note that under this conditioning we have that eachiyof. ., T; is selected
uniformly and independently frorQ. Note also that this conditioning can change the valulidfa
probability) by at mostt — 1) (¥ )loglogt < 52, S0 under this conditioning we ha@Py] > 3 - &.

We now use McDiarmid’s inequality where the random variables are the randomly selected terms
To,..., Tt from Q andF (Ty,...,T;) denoted, i.e.

F(T,..., Tt) = I?(r[Tl is satisfied by but noT; with j > 2 is satisfied by] .

Since eacfTj belongs taQ, we have

logt
forall j=2,...,t. Takingt = ;11 - %, McDiarmid's inequality implies that AP < %} is at most

ex —0?/(16-2%) = ex <_a222k ><ex <_a222k> < ex < —at >
U yigz ) = P aei—1)10g2t) = “Pliatiog?t) = “P\ 161 (2/a)log?t

where the last inequality holds sinflet) is a-interesting. Combining all the failure probabilities, the
lemma is proved. O

4.3 Identifying (most pairs of) co-occurring variables

Recall that inSection3.3 we partitioned the terms of our monotone DNF into four disjoint groups
depending on what subset §¥;,v»} was present in each term. In the non-monotone case, we will
partition the terms off into nine disjoint groups depending on whether eacl,0f» is unnegated,
negated, or absent:

f =0V (V101:) V (VIG0x) V (V20i1) V (V1V2011) V (VIV2G01) V (V20k0) V (V1V2010) V (VIV2000)

Thusg.. contains those terms dfwhich contain neithev; nor v, in any form;gg. contains the terms
of f which containvy but notv, in any form (withvy removed from each termgj,; contains the terms
of f which containv, but notv; in any form (withv, removed from each term); and so on. Eachis
thus a DNF (possibly empty) over literals formed frem). . ., vy.

For all four possible values @h, b) € (0,1)2, we can empirically estimate

Pab = PK[OwV0aV0ibV0ab =PK[f(X)=1|x1=aXx=Db] .

It is easy to see that Ryi1] is either O or else at leasy2* depending on whethey;; is empty or
not. Ideally we would like to be able to accurately estimate each|[gédPrPrgo1], P010], and Pfgi1];
if we could do this then we would have complete information about which pairs of literals involving
variablesv; andv, co-occur in terms of . Unfortunately, the probabilities fro|, Prigos], Pfgi10], and
Pr{g11] cannot in general be obtained fropgo, pPo1, P10, andpi1. However, we will show that we can
efficiently obtain some partial information which enables us to learn to fairly high accuracy.

As before, our approach is to accurately estimate the qudPtityp11 — p1o — Po1+ Poo- We have
the following two lemmas:
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Lemma 4.4. If all four of goo, Jo1, G10, and g1 are empty, then P equals

Pr{gi- A g« A (no other g.)] + Prigo. A .1 A (no other g.)]
—Pr{g1. Ag.a A (no other g.)] —Prigo. A Q.o A (No other g.)] . (4.1)

Proof. Since all four ofgoo, Jo1, 910, andgz; are empty we need only consider the five events g.o,
Oo«, 0«1, @andgi.. We now analyze the contribution Bfrom each possible subset of these 5 events:

e P gets a net contribution of 0 from thogewhich belong tag. . (and to any other subset of the
remaining four events) since each sucis counted in each oo, po1, P10, andpy1. It remains
to consider all 16 subsets of the four evemis 9o, 0«1, andga..

e P gets a net contribution of 0 from thogevhich are in at least 3 of the four evergs), Jo«, 91,
andgz. since each suchis counted in each gfoo, Po1, P10, andp11. P also gets a net contribution
of 0 from thosex which are in exactly one of the four evergs, 9o, 0«1, andgs.. It remains to
consider those& which are in exactly two of the four everas,, go., 9.1, andg.o.

e P gets a net contribution of 0 from thogevhich are ing1, andgg, and no other events, since each
suchx is counted in each dfigo, pPo1, P10, @andp11. The same is true for thosewhich are ing.1
andg.o and no other events.

e P gets a net contribution of
—Pr{g1« A 9.1 A (no otherg. . occurg]
from thosex which are ing1, andg,1 and no other event. Similarliz gets a net contribution of
— Pr{go. A 9.0 A (N0 otherg. . occurs)]
from thosex which are ingo,. andg.o and no other evenP gets a net contribution of
Prig1« A 9«0 A (N0 otherg. . occurg]
from thosex which are ingy1, andg.o and no other event, and gets a net contribution of
Pr{go« A 0.1 A (NO otherg. . occurs]

from thosex which are ingp,. andg.; and no other event.

Lemma 4.5. If exactly one of gy, do1, 910 and g1 is nonempty (say.g), then P equals4.1) plus

Prig11/A 01« A Qo A (nO other g.)] + Pr{gi1 A go« A G«1 A (N0 other g.)]
—Pr{g11A 1. A Qi1 A (no other g.)] — Pr{g11 A go« A Qw0 A (N0 other g.)]
+Prg11/A do« A (no other g.)] + Pr{g11 A g0 A (N0 other g.)] + Prigi1 A (no other g.)] .
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Proof. We suppose thaj;; is nonempty. We wish to analyze the contributiorPtfrom all 64 subsets
of the six event$).., 1., Jos, 9«1, 0«0, @andgz1. FromLemma 4.4we know this contribution for the 32
subsets which do not includg1 is (4.1) so only a few cases remain:

e P gets a net contribution of O from thogevhich are ing;; and ing., and in any other subset of
events (each suchis counted in each ab11, po1, P1o, andpog). Similarly, P gets a contribution
of 0 from thosex which are ingz; and in at least three @, Qo+, 0«1, andg.o. So it remains only
to analyze the contribution from subsets which contain contain at most two ofj1., Jo«, 91,
00, and contain nothing else.

e An analysis similar to that diemma 4.4shows thaP gets a net contribution of

Pr{g11A 91 A Qw0 A (N0 otherg..)] 4+ Pr{gi1 A Go« A g1 A (no otherg. )]
—Pr{g11A 91+ A Qi1 A (nO otherg. . )] — Pr{g11 A go« A 9«0 A (O otherg. )]

from thosex which are ingy1, in exactly two of{gi.,do«, 01,90}, and in no other events. So
it remains only to consider subsets which contgdpn and at most one afi., 9o, 9«1, 9«0, and
nothing else.

e P gets a contribution of 0 fromt which are ing11 andgy. and in nothing else; likewise from
which are ing11 andg.1 and in nothing elseP gets a contribution of

Pr{g11 A o« A (N othery. .)]

from x which are ingy1 andgop. and in nothing else, and a contribution of
Prigi1/A Gio A (N0 otherg. )]

from x which are ing;1 andg.o and in nothing else.

e P gets a net contribution of Ry11 A ( no otherg. .)] from thosex which are ing;1 and in no other
event.

O]

Using the above two lemmas we can show that the valdisfa good indicator for distinguishing
between all four 0800, go1, 910, @ndg;1 being empty versus exactly one of them being nonempty:

Lemma 4.6. For n sufficiently large and & 4, with probability at leastl — §,54t— Sshared— many

over a random draw of f frorﬁDE’k, we have that: (i) if y and » do not co-occur in any term of f then
P< oc2/8t; (i) if v, and w do co-occur in some term of f and exactly one &f @o1, 010, and g1 is
nonempty, then B 3a:?/16t.

Proof. With probability at least X §,55t— Sshared— dmany @ randomly choserfi from D€ will have
all of the following properties:

1. Each term inf is uniquely satisfied with probability at leasy 2" (by Lemma 4.3;
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2. Each variable irf appears in at most22a?/(1/tlogt) terms (byLemma 3.3; and

3. Each pair of termsT; and Tj in f are both satisfied with probability at most lv@% (by
Lemma 4.2.

For the sequel assume that we have such.ane first prove (i) by showing th&—as represented
by (4.1) of Lemma 4.4—is at mosta*/(tlogt). By property 3 above, for any pair of terms consisting of
one term frongy, and the other frong., the probability that both terms are satisfied is at most 18§ .
Since each ofj;, andg.o contains at most’21a?/(y/tlogt) terms by property 2, a union bound gives

a?

Prigi« A g.o A (no otherg. )] < Priga. A gio] < Ztlogt
A similar bound holds for Rgo. A g.1 A (no otherg. .)], which is the only other positive summand in
(4.1), soP is certainly at mostx*/(tlogt). This is at mostx?/8t sincea < 1/2 andt > 4.

We now prove (ii). By an argument similar to the above we have that the first six summands (not
including @.1) in the expression okemma 4.5 namely Pfg11 A g1« A 0.0 A (N0 otherg..)] through
Prlg11 /A G0 A (N0 otherg. )], are each at most*/(4tlogt) in magnitude. Now observe that each in-
stancex that uniquely satisfies a ter in f containing bothv; unnegated and, unnegated must
satisfygy; and no otheg... Thus under the conditions of (ii) the last summandé@mma 4.5 namely
Prig11 A ( no otherg..)], is at leastr /2+1 by property 1 above, so we have that (ii) is at least

o 5at
2kl 2tlogt -

(Here the ®&*/(2tlogt) comes from the ten summands — four from1f and six from the first six
summands ofemma 4.5- each of which contributes at mast/ (4t logt) in magnitude.) Sincékt) is
a-interesting we have/2 > «, and from this and the constant boundscoandt it is easily shown that

o >(X—2 and §7a4 <5LC2
2k+l = 2t 2tlogt — 16 °’

from which the lemma follows. O

Itis clear that an analogue bémma 4.6holds for any pair of variables, v; in place ofvy, v,. Thus,
for each pair of variables, vj, if we decide whethey; andv; co-occur (negated or otherwise) in any
term on the basis of whethgy; is large or small, we will err only if two or more @ko, Jo1, 910, andgs1
are nonempty.

We now show that forf € Dtn'k, with very high probability there are not too many pairs of variables
(vi,Vj) which co-occur (with any sign pattern) in at least two termd ofNote that this immediately
bounds the number of paifs;, vj) which have two or more of the correspondig@, Jo1, 910, andgi1
nonempty.

Lemma 4.7. Letd> 0 and f € D5, The probability that more thafd + 1)t2k*/n2 pairs of variables
(vi,V;j) each co-occur in two or more terms of f is at mesp(—d?t3k*/n*).
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Proof. We use McDiarmid’s inequality, where the random variables are the t&ms, T; chosen in-
dependently from the set of all possible terms of ledgémdF (Ty,. .., T;) denotes the number of pairs
of variables(vi,v;) that co-occur in at least two terms. For edch 1,...,t we have

. k2
Pr{T, contains bottv; andv,] < o

so by a union bound we have

. . . . t2K*
Pr[f contains at least two terms which contain betlandv, in any form < ik

By linearity of expectation we have = E[F] < t?k*/n?. Since each term involves at mdétpairs of
co-occurring variables, we have

IF(Ty,..., ) —F(To,...,Tiig, T, Tisr, .., )| <6 = K2

We thus have by McDiarmid’s inequality that [Pr> t?k*/n? + 1] < exp(—1?/(tk*)). Taking T =
dt?k*/n?, we have PiF > (d + 1)t?k*/n*2] < exp(—d?t3k*/n?). O

Taking d = n?/(t%*k*) in the above lemma (note thdt> 1 for n sufficiently large since>* =
O(n*>/8)), we have(d + 1)t%k* /n? < 2t3/4 and the failure probability is at most expy/t/k*) (we hence-
forth write Sco-occurto denote this quantity exp-v/t/k%)). The results of this section (together with a
standard analysis of error in estimating e&ghthus yield:

Theorem 4.8. For n sufficiently large and for any > 0, with probability at least. — 6co-occur— 0{,5at—

Oshared— dmany— 6 over the random draw of f from%* and the choice of random examples, the above
algorithm runs in @n?t2log(n/8)) time and outputs a list of pairs of variablés;,v;) such that: (i)

if (vi,v;j) is in the list then vand v, co-occur in some term of f; and (ii) at mosp N 2t3/4 pairs of
variables(v;, vj) which do co-occur in f are not on the list.

4.4 Reconstructing an accurate DNF hypothesis

It remains to construct a good hypothesis for the target DNF from a list of pairwise co-occurrence
relationships as provided byheorem 4.8 As in the monotone case, we consider the gr&owith
verticesvy, ..., vy and edges for precisely those pairs of varialfies/j) which co-occur (with any sign
pattern) in some term of. As before this graph is a union bfrandomly choselk-cliquess,...,§

which correspond to theterms inf, and as before we would like to find a setla€liques inG that
contains the k-cliques corresponding to the termsfols a subset. However, there are two differences
now: the first is that instead of having the true graphwe instead have access only to a gr&gh
which is formed fromG by deleting some set of at molsh = 2t%4 edges. The second difference is
that the final hypothesis must take the signs of literals in each term into account. To handle these two
differences, we use a different reconstruction procedure than we used for monotone S@dtiam3.4;

this reconstruction procedure only works fee O(n%2-7) wherey > 0.
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We first show how to identify (with high probability over the choicefdfthe set ofall k-cliques in
G’; clearly, thek-cliques corresponding to terms frare a subset of this set. We then show how to form
a DNF hypothesis from the set of &Hcliques inG'.

We now describe an algorithm which, for= O(n®2-7) with y > 0, with high probability runs in
polynomial time and identifies all thecliques inG’ which contain edgévs,v,). SinceG’ has at most
tk? edges, running the algorithm at mokt times on all edges i’ will give us with high probability
all thek-cliques inG'. The algorithm is:

e Let A be the set of vertices; such thatvy, v», andv; form a triangle inG'. Run a brute-force
algorithm to find all(k — 2)-cliques in the subgraph induced Hy(this is the subgraph of’
whose vertices are the verticesfofand whose edges are the edges that are pres&hbietween
vertices ofp).

It is clear that the algorithm finds evekyclique which contains edge1,Vv2). To bound the algo-
rithm’s running time, it suffices to give a high probability bound on the siz& iofthe graphG (clearly
A only shrinks in passing fror® to G'). The following lemma gives such a bound:

Lemma 4.9. Let G be a random graph as described above. For asy®(n®?-7) and any C> 0 we
have that with probabilityl — O ('1%?;”) the size o\ in G is at most Ck.

Proof. In order forvy, vo, andv; to form a triangle inG, it must be the case that either (i) some clie
contains{1,2, j}; or (ii) there is some pair of cliquel,, S, with 2¢ S, and{1, j} C S, and 1¢ S, and
{2} CcS.

For (i), we have fromLemma 3.11thatv; andv, co-occur in more tha@ terms with probability
at most(tk?/n?)C. Since each term in whicky, andv, co-occur contributes at mokt— 2 vertices
vj to condition (i), the probability that more th&(k — 2) verticesv; satisfy condition (i) is at most
(tk?/n?)¢ = O(1/n%/?).

For (ii), let A be the set of those indicese {1,...,t} such that 22 S, and 1€ S,, and letSy be
UacaSa. Similarly let B be the set of indiceb such that ¢ §, and 2€ S,, and letSs be UpcpS,. It is
clear thatA andB are disjoint. For each=1,...,t we have that € A independently with probability
at mostp = k/n, soE[|A|]] <tk/n. We now consider two cases:

Case 1:t <n/logn. In this case we may tak® = nlogn/(tk) in the Chernoff bound, and we have that
Pr{|A| > B pt] equals

Bpt logn logn
e ek e 1
PriA| = logn] < (ﬁ) - <I092n> <Q(|Ogn)> ne (@)

The same bound clearly holds fBr Note that in Case 1 we thus ha&|, |Sg| < klogn with probability
1—1/n°@),
Case 2:t > n/logn. In this case we may takg = logn in the Chernoff bound and we obtain

tklogn e \K(logn)/n e \ 1
> = > <[ — — ) =
PrIAl = Bt Pr[|A -~ n } - (Iogn) < (Iogn) no(®)
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where the last inequality holds sinke= Q(logn) (sincet > n/logn and(k;t) is a-interesting). In Case
2 we thus havéSa|,|Ss| < (tk?logn)/n with probability 1— 1/n®).

Let S, denoteSy — {1} andS; denoteSg — {2}. SinceA andB are disjoint, it is easily seen that
conditioned or8, being of some particular siz, all (“QAZ) sy-element subsets ¢B, ..., n} are equally

likely for S,. Likewise, conditioned oi; being of sizesg, all (”QBZ) ss-element subsets df3,...,n}
are equally likely forS;. Thus, the probability thg8, N S;| > C is at most

() (%) <(3%) <(%) “2
C n—2 n—2 n
(since the expression on the left is an upper bound on the probability that any collecGagierhents
in S all coincide with elements d8,).

In Case 1< n/logn) we may assume thdf, s; are each at moglogn (recall from above that this
holds with probability - n-?(), and thus 4.2) is at most|(2k?log?n)/n|®. In Case 2> n/logn)
we may assume thaf, sy < (tk?logn)/n (here too from above we have that this holds with probability
1—n~®®) and thus 4.2) is at most

22k log?n\ o log®n
3 - n2/C :
Thus all in all, we have that except with probabilidf1/n“/?) event (i) contributes at mo§(k — 2)
verticesv; such that{1,2, j} forms a triangle, and except with probabil@('i%i”) event (ii) con-
tributes at mos€ verticesv; such that{1,2, j} forms a triangle. This proves the lemma.

By Lemma 4.9 doing a brute-force search which finds @l— 2)-cliques in the graph induced by
A takes at mos{S¥) < (6K = (e)0lloan) — n0(990) time steps. Thus we can efficiently with high
probability identify all thek-cligues inG'. How many of the “true” cliquess,...,S in G are not
present ag-cliques inG'? By Lemma 3.11with probability at least 1-t2(tk?/n?)€ each edgévi, ;)
participates in at mosE cliques fromS,,...,S. SinceG' is missing at mosNy edges fromG/, with
probability at least 1- t?(tk?/n?)C the set of alk-cliques inG' is missing at mostN, “true” cliques
froms,....S.

Summarizing the results of this section so far, we have:

Theorem 4.10.Fix C > 2. Given a DNF formula f drawn frorﬁ)}{k and a list of pairs of co-occurring
variables as described ifiheorem 4.8with probability at leastl — 1/n®(©) the above procedure runs
in n°1°9%) time and constructs a a listZ .., Zy (where N = n°(°99)) of k-cliques which contains all
but at most Chl of the cliques §....,S.

We construct a hypothesis DNF from the &t . . ., Zy of candidatek-cliques as follows: for each
Z we form all X possible terms which could have given ris&tdqcorresponding to all'2sign patterns
on thek variables inz;). We then test each of thes&\ potential terms against a sampleMdfandomly
drawn negative examples and discard any terms which output 1 on any negative example; the final
hypothesid is the OR of all surviving terms. Any candidate tefrfhwhich has

£
/
= = >
DT =10 19 =01> S
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will survive this test with probability at most expeM /(2€tIN')). Takinge = 1/2X and

k+1pN|/ 2
M — 2 Nglog n

we have that with probability 2 1/n®M) each term in the final hypothesis contributes at rag&2<1N’)
toward the false positive rate bf so with high probability the false positive ratefois at most = 1/2%,

The false negative rate ¢fis at mostz—lk times the number of terms iff which are missing irh.
Since the above algorithm clearly will not discard any ternf igsince such a term will never cause a
false negative mistake), we need only bound the number of terrhssinich are not among our<Rl’
candidates. With probability at least-15¢jique = 1 —t?/(}), ach true cliqué,, ..., S in G gives rise
to exactly one term of (the only way this does not happen is if two terms consist of literals over the
exact same set &f variables, and the probability that this occurs is at niégfy)), so Theorem 4.10
implies thath is missing at mosEN, terms off. Thus the false negative rate is at most

CNo _2¢t* 1
2k = 2k Q(tl/4) -

All'in all the following is our main learning result for non-monotone DNF:

Theorem 4.11.Fix 7, a > 0 and C> 2. Let(k,t) be a monotonex-interesting pair. For f randomly
chosen fromD}¥, with probability at leastl — dco-occur— &jsat— Sshared— omany— Sclique— 1/n?©

the above algorithm runs i®(n2t2+n°(°9%)) time and outputs a hypothesis h whose error rate relative
to f under the uniform distribution is at mostQ(t¥/4).

It can be verified from the definitions of the varioéis that for anyt = w(1) as a function of, the
failure probability iso(1) and the accuracy is10(1).

5 Future work

We can currently only learn random DNFs witkn®/2) terms 6(n?) terms for monotone DNF); can
stronger results be obtained which hold for all polynomial-size DNF? A natural approach here for learn-
ing n®-term DNF might be to first try to identify alf -tuples of variables which co-occur in a term, where

¢’ is some constant larger than Also, our current results fdr= w(1)-term DNF let us learn to some
1—0(1) accuracy but we cannot yet achieve an arbitrary inverse polynomial error rate for non-monotone
DNF. Finally, another interesting direction is to explore other natural models of random DNF formulas,
perhaps by allowing some variation among term sizes or dependencies between terms.
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