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Abstract: We continue the investigation of problems concerndogrelation clusteringor
clustering with qualitative informatigrwhich is a clustering formulation that has been studied
recently (Bansal, Blum, Chawla (2004), Charikar, Guruswami, Wirth (FOCS’03), Charikar,
Wirth (FOCS’'04), Alon et al. (STOC'05)). In this problem, we are given a complete graph
onn nodes (which correspond to nodes to be clustered) whose edges are falfidedimilar

pairs of items) and- (for dissimilar pairs of items). Thus our input consists of only qualitative
information on similarity and no quantitative distance measure between items. The quality of
a clustering is measured in terms of its number of agreements, which is simply the number of
edges it correctly classifies, that is the sum of number @dges whose endpoints it places

in different clusters plus the number &f edges both of whose endpoints it places within the
same cluster.

In this paper, we study the problem of finding clusterings that maximize the number of
agreements, and the complementary minimization version where we seek clusterings that min-
imize the number of disagreements. We focus on the situation when the number of clusters is
stipulated to be amall constant k Our main result is that for ever; there is a polynomial
time approximation scheme for both maximizing agreements and minimizing disagreements.

*A preliminary version of this paper appeared in fmceedings of the 17th Annual ACM-SIAM Symposium on Discrete
Algorithms January 2006.

TSupported in part by NSF CCF-0343672, an Alfred P. Sloan Research Fellowship, and a David and Lucile Packard Foundation
Fellowship.

ACM Classification: F.2.2, G.1.2, G.1.6

AMS Classification: 68W25, 05C85

Key words and phrases:clustering, approximation algorithm, random sampling, polynomial time approx-
imation scheme.

Authors retain copyright to their work and grant Theory of Computing unlimited rights
to publish the work electronically and in hard copy. Use of the work is permittgd as
long as the author(s) and the journal are properly acknowledged. For the detailed
copyright statement, séetp://theoryofcomputing.org/copyright .html.

(© 2006 loannis Giotis and Venkatesan Guruswami DOI: 10.4086/toc.2006.v002a013



http://dx.doi.org/10.4086/toc
http://theoryofcomputing.org/copyright.html
http://dx.doi.org/10.4086/toc.2006.v002a013

I. GIOTIS AND V. GURUSWAMI

(The problems are NP-hard for eveqy> 2.) The main technical work is for the minimization
version, as the PTAS for maximizing agreements follows along the lines of the property tester
for Max k-CUT by Goldreich, Goldwasser, Ron (1998).

In contrast, when the number of clusters is not specified, the problem of minimizing dis-
agreements was shown to be APX-hard (Chawla, Guruswami, Wirth (FOCS’03)), even though
the maximization version admits a PTAS.

1 Introduction

In this work, we investigate problems concerning an appealing formulation of clustering cattethtion
clustering or clustering using qualitative informatiotinat has been studied recently in several works, in-
cluding 2, 3,4, 5, 7, 6, 8, 17]. The basic setup here is to cluster a collectiom @d&ms given as input only
gualitative information concerning similarity between pairs of items; specifically for every pair of items, we
are given a (Boolean) label as to whether those items are similar or dissimilar. We are not provided with any
guantitative information on the degree of similarity between elements, as is typically assumed in most clus-
tering formulations. These formulations take as input a metric on the items and then aim to optimize some
function of the pairwise distances of the items within and across clusters. The objective in our formulation
is to produce a partitioning into clusters that places similar objects in the same cluster and dissimilar objects
in different clusters, to the extent possible.

An obvious graph-theoretic formulation of the problem is the following: given a complete graph on
nodes with each edge labeled eithei‘(similar) or “—" (dissimilar), find a partitioning of the vertices into
clusters that agrees as much as possible with the edge labels. The maximization version soall G MEE,
seeks to maximize the number of agreements: the numbereafges inside clusters plus the number-of
edges across clusters. The minimization version, denot&DMAGREE, aims to minimize the number of
disagreements: the number-efedges within clusters plus the numberotdges between clusters.

In this paper, we study the above problems when the maximum number of clusters that we are allowed
to use is stipulated to be a fixed consti&ntWe denote the variants of the above problems that have this
constraint as MX AGREEK| and MINDISAGREEK]. We note that, unlike most clustering formulations, the
MaxAGREEand MINDISAGREE problems are not trivialized if we do not specify the number of clusters
k as a parameter — whether the best clustering uses few or many clusters is automatically dictated by the
edge labels. However, the variants we study are also interesting formulations, which are well-motivated
in settings where the number of clusters might be an external constraint that has to be met, even if there
are “better” clusterings (i. e., one with more agreements) with a different number of clusters. Moreover,
the existing algorithms for, say MDISAGREE, cannot be modified in any easy way to output a quality
solution with at mosk clusters. Therefork-clustering variants pose new, non-trivial challenges that require
different techniques for their solutions.

In the above description, we assumed that every pair of items is labeledmas in the input. However,
in some settings, the classifier providing the input might be unable to label certain pairs of elements as
similar or dissimilar. In these cases, the input is an arbitrary g@pdgether with+ labels on its edges.

We can again study the above problems M GREEK] (resp. MNDISAGREEK]) with the objective being

to maximize (resp. minimize) the number of agreements (resp. disagreements) on del@bsbis, we do

not count non-edges @ as either agreements or disagreements). In situations where we study this more
general variant, we will refer to these problems asX\\GREEk] ongeneralgraphs and MNDISAGREEK]

on general graphs. When we don’t qualify with the phrase “on general graphs,” we will always mean the
problems on complete graphs.
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Our main result in this paper is a polynomial time approximation scheme (PTAS)AarAGREEK] as
well as MINDISAGREEK] for k > 2. We now discuss prior work on these problems, followed by a more
detailed description of results in this paper.

1.1 Previous and related work

The above problem seems to have been first considered by Ben-Dor @trabtjvated by some compu-
tational biology questions. Later, Shamir et dl7][studied the computational complexity of the problem
and showed that Mx AGREE (and hence also MIDISAGREE), as well as MX AGREEK] (and hence also
MINDISAGREEK]) for eachk > 2 is NP-hard. They, however, used the term “Cluster Editing” to refer to
this problem.

Partially motivated by machine learning problems concerning document classification, Bansal, Blum,
and Chawla %] also independently formulated and considered this problem. In particular, they initiated the
study of approximate solutions to IMDISAGREE and MAXAGREE, and presented a PTAS for M A-
GREEand a constant factor approximation algorithm foN®DI1SAGREE (the approximation guarantee was
a rather large constant, though). They also noted a simple factor 3 approximation algorithridrav
AGREE[2]|. Charikar, Guruswami, and Wirttv] proved that MNDISAGREE is APX-hard, and thus one
cannot expect a PTAS for the minimization problem similar to the PTAS faxMGREE They also gave a
factor 4 approximation algorithm for MDISAGREE by rounding a natural LP relaxation using the region
growing technique. Recently, Ailon et ak][presented an elegant combinatorial factor 3 approximation
algorithm with a clever analysis for MDISAGREE, they also get a factor/2 approximation using LP
techniques on top of their basic approach.

The problems on general graphs have also received attention. It is known that hgtAd®REE and
MINDISAGREE are APX-hard }, 7]. Using a connection to minimum multicut, several groupsd, 10|
presented a@(logn) approximation algorithm for MVDISAGREE In fact, Emanuel and Fiat noted ihQ]
that the problem is as hard to approximate as minimum multicut (and so thigdotpr seems very hard to
improve). For the maximization version, algorithms with performance ratio better tié6 @re known for
MAXAGREE[7, 18]. The latter work by Swamyl[8] shows that a factor.@666 approximation can also be
achieved when the number of clusters is specified (i. e., fak MGREEK] for k > 2).

Another problem that has been considered, let us call AXKIORR, is that of maximizing correla-
tion, defined to be the difference between the number of agreements and disagreements. Charikar and
Wirth [8] (see also16]) present a factoD(logn) approximation algorithm for the problem (calledaQP)
of maximizing a quadratic form with general (possibly negative) coefficients, and use this to deduce a factor
O(logn) approximation for Mux CORR on complete graphs. (Their approximation guarantee holds also for
the weighted version of Mx CORR where there are nonnegative weights on the edges and the goal is to
maximize the difference between the sum of the weights of agreements minus the sum of weights of the dis-
agreements.) For Mx CORR on general graphs, @(log6(G)) approximation is presented iB][ where
0(-) is the Lovasz Theta Function. Alon et af3][also showed an integrality gap @f(logn) for the stan-
dard semidefinite program relaxation ofAMQP (the largest such integrality gap for a graph is called the
Grothendieck constamtf the graph — thus these results establish the Grothendieck constant of the complete
graph om vertices to beéd(logn)). Very recently, for some constaant> 0, Arora et al. §i] proved a factor
log* ninapproximability result for Mx QP and the weighted version of A CORR.
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1.2 Ourresults

The only previous approximation for MDISAGREEk] was a factor 3 approximation algorithm for the case
k=2 [5]. The problems were shown to be NP-hard for evely2 in [17] using a rather complicated reduc-
tion. In this paper, we will provide a much simpler NP-hardness proof and prove that ot BREEK]
and MINDISAGREEK] admit a polynomial time approximation scheme for evety 2.1 The existence of

a PTAS for MNDISAGREEK] is perhaps surprising in light of the APX-hardness aNlBISAGREEwWhen
the number of clusters is not specified to be a constant (recall that the maximization vErsgaumit a
PTAS even whelk is not specified).

It is often the case that minimization versions of problems are harder to solve compared to their com-
plementary maximization versions. The APX-hardness of MSAGREE despite the existence of a PTAS
for MAXAGREEIs a notable example. The difficulty in these cases is when the optimum value of the mini-
mization version is very small, since then even a PTAS for the complementary maximization problem need
not provide a good approximation for the minimization problem. In this work, we first give a PTAS for
MAXxAGREEK]. This algorithm uses random sampling and follows closely along the lines of the property
testing algorithm for Max-Cut due to L3].

It is interesting to note that our algorithm can also be used as a PTAS for the unbounded clusters case
by settingk = Q(1/¢). Itis then not hard to see by a cluster merging procedure that the solution obtained
by our algorithm is still within are-factor of the optimal solution. Furthermore, since our algorithm runs
in linear time (on the number of vertices), it can be a more efficient alternative to the algorithm presented
in [5].

In the next section, we develop a PTAS forMDISAGREEK], which is our main result. The difficulty
in obtaining a PTAS for the minimization version is similar to that faced in the problem iaf-RSum
clustering, which has the complementary objective function exRICM AX -k-CuT. We remark that while
an elegant PTAS for MTRICMAX-k-CuT due to de la Vega and Kenyotd] has been known for several
years, only recently has a PTAS foriNtk-SuM clustering been obtained J]. We note that although the
case of MN-2-Sum clustering was solved irlf] soon after the MTRICMAX CUT algorithm of [L2], the
casek > 2 appeared harder. Similarly to this, fonWDISAGREEK], we are able to quite easily give a PTAS
for the 2-clustering version using the algorithm forKMAGREE2], but we have to work harder for the case
of k > 2 clusters. Some of the difficulty that surfaces whken 2 is detailed infSection4.1

In Section5, we also note some results on the complexity ofM\GREEk] and MINDISAGREEK]
on general graphs — these are easy consequences of connections to problems like Max Cut and graph
colorability.

Our work seems to nicely complete the understanding of the complexity of problems related to correla-
tion clustering. Our algorithms not only achieve excellent approximation guarantees but are also sampling-
based and are thus simple and quite easy to implement.

2 NP-hardness of MNDISAGREE and MAXAGREE

In this section we show that the exact versions of problems we are trying to solve are NP-hard. An NP-
hardness result for MX AGREE on complete graphs was shown B];[however their reduction crucially
relies on the number of clusters growing with the input size, and thus does not yield any hardness when
the number of clusters is a fixed consténtt was shown by Shamir, Sharan, and TsLif][ using a rather

1our approximation schemes will be randomized and deliver a solution with the claimed approximation guarantee with high
probability. For simplicity, we do not explicitly mention this from now on.
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complicated reduction, that these problems are NP-hard for each fixed nkrti2of clusters. We will
provide a short and intuitive proof thatiIMDISAGREEK] and Max AGREEK] are NP-hard.

Since Max AGREHK| and MINDISAGREEK| have complementary objectives, it suffices to establish the
NP-hardness of MiDISAGREEK]. We will first establish NP-hardness foe= 2, the case for generlawill
follow by a simple “padding” with(k — 2) large collections of nodes with edges between nodes in each
collection and— edges between different collections.

Theorem 2.1. MINDISAGREHZ2] on complete graphs is NP-hard.

Proof. We know that @RAPHMINBISECTION, hamely partitioning the vertex set of a graph into two equal
halves so that the number of edges connecting vertices in different halves is minimized, is NP-hard. From
an instances of GRAPHMINBISECTION with n (even) vertices we obtain a complete gra@ghusing the
following polynomial time construction.

Start withG and label all existing edges & as+ edges inG’' and non-existing edges asedges. For
each vertew create an additional set afvertices. Let us call these vertices together with “group”V,.
Connect with+ edges all pairs of vertices withWy,.. All other edges with one endpoint iy are labeled as
— edges (except those already labeled).

We will now show that any 2-clustering @' with the minimum number of disagreements, has two
clusters of equal size with all vertices of any group in the same cluster. Consider some optimal 2-clustering
W with two clusterd\; andW, such thatW | # |Wa| or not all vertices of some group are in the same cluster.
Pick some groui, such that not all its vertices are assigned in the same cluster. Place all the vertices of
the group in the same cluster, obtainMj such that the size difference of the two clusters is minimized.

If such a group could not be found, pick a grodpfrom the larger cluster and place it in the other cluster.
Since all groups contain the same number of vertices it must be the case that the size difference between the
two clusters is reduced.

Let us assume that! vertices of groups, were inWy andV? in Wo. Without loss of generality, let us
assume that the clusterig = (W;,W,) above is obtained by moving thMe group vertices into clusténs;

W) =W\, WS =Wa UV

We now observe the following facts about the difference in the number of disagreements bétiveen
andWw.

e Clearly the number of disagreements between vertices nét amd between one vertex \f¢ with
one inW, remains the same.

e The number of disagreements is decreasefVpjy: V2| based on the fact that all edges witMpare
+ edges.

e Itis also decreased by at ledsf| - [W,| — (n— 1) based on the fact that all but at mest 1 edges
connecting vertices of, to the rest of the graph are edges.

e The number of disagreements increases at fwJst Wb \ V2| because (possibly) all of the vertices
in V! are connected with- edges with vertices i\ outside their group.

Overall, the difference in the number of disagreements is at most
V- MBAVE] = VG- IV = VG- [Wa] + (= 1)
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Notice that since|W;| — |Wj|| was minimized it must be the case tHiaf| > W, \ ViZ|. Moreover since a
group has an odd number of vertices and the total number of vertig8sisfeven, it follows thatWj|
&\ V2| and thugW,| — W, \ V2| > 1. Therefore the total number of disagreements increases at most

(I’]— 1) - ‘Vv]" : (‘Vv2’ + 1) :

Since|V}H| + [VZ| = n+1 andV,' cannot be empty, it follows tha¥}| - (V2| + 1) > n and the number of
disagreements strictly decreases, contradicting the optimality. of

Therefore the optimal solution to the INDISAGREH?2] instance has two clusters of equal size and
all vertices of any group are contained in a single cluster. It is now trivial to see that an optimal solution
to the GRAPHMINBISECTION problem can be easily derived from theMMDISAGREE[2] solution which
completes the reduction. O

We now prove the NP-hardness for more than two clusters.

Theorem 2.2. For every fixed k> 2, there exists n such thaflAX AGREEK] and MINDISAGREEK] on
complete graphs are NP-hard.

Proof. Consider an instance of theINDISAGREE2] problem on a grapls with n vertices. Create a graph
G’ by adding toG, k— 2 “groups” ofn+ 1 vertices each. All edges within a group are marked- a&slges,
while the remaining edges are marked-asdges.

Consider now &-clustering ofG’' such that the number of disagreements is minimized. It is easy to
see that all the vertices of a group must make up one cluster. Also observe that any of the original vertices
cannot end up in one group’s cluster since that would indu¢el disagreements, strictly more than it
could possibly induce in any of the 2 remaining clusters. Therefore the 2 non-group clusters are an optimal
2-clustering ofG. The theorem easily follows. O

3 PTAS for maximizing agreement withk clusters

In this section we will present a PTAS for AK AGREEK] for every fixed constark. Our algorithm follows
closely the PTAS for Maxk-CUT by Goldreich et al. 13]. In the next section, we will present our main
result, namely a PTAS for MiDISAGREEK], using the PTAS for Mx AGREEK] together with additional
ideas?

Theorem 3.1. For every k> 2, there is a polynomial time approximation schemeNbxx AGREEK].

Proof. We first note that for everlg > 2, and every instance of MK AGREEK], the optimum numbe®PT

of agreements is at least/16. Letn, be the number of positive edges, amd= (5) —n;- be the number

of negative edges. By placing all vertices in a single cluster, wengetgreements. By placing vertices
randomly in one ok clusters, we get an expectéti — 1/k)n_ agreements just on the negative edges.
Therefore

OPT > max{n,(1—1/k)n_} > “_21/") (2) >n?/16 .

The proof now follows fromTheorem 3.2which guarantees a solution within additige? of OPT for
arbitrarye > 0. O

2This is also similar in spirit, for example, to the PTAS for Min 2-sum clustering based on the PTAS for Metric Maxi@UT [
12].
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AlgorithmMaxAg (k, €):
Input A labelingL : (2) — {+,—} of the edges of the complete graph on vertexset
Output A k-clustering of the graph, i. e., a partitionéfinto (at mostk parts\Wi, W, ... ,W,.

1. Construct an arbitrary partition of the graph into roughly equal partsy?,...,.V™), m= {‘5‘1.

2. Fori = 1...m, choose uniformly at random with replacement frgqV', a subseS8 of size
r = 32 |og 84k
2¢2 s " )
3. SetW to be an arbitrary (or random) clustering.

4. For each clustering of each of the sBt&to (S,...,S,) do
(a) Fori = 1...mdo the following
(i) For each vertex € V' do
(1) Forj=1...k, let
Biv) =M (W) NS+ 3141 ()N
(2) Placevin cluster argmayf; (V).
(b) If the clustering formed by step (a) has more agreementsthaetW to be that clustering}
5. Outputw.

Figure 1:MaxAg(k, €) algorithm

Theorem 3.2. On inpute, § and a labelingl of the edges of a complete graph G with n vertices, with
probability at leastl — §, algorithm MaxAg outputs a k-clustering of the graph such that the number of
agreements induced by this k-clustering is at le@BfT — en?/2, whereOPT is the optimal number of
agreements induced by any k-clustering of G. The running time of the algorithrk3&n 109/ (€9)))

The proof of this theorem is presented3ection3.2, and we now proceed to describe the algorithm in
Figure 1

3.1 Overview

Our algorithm is given a complete gra@V, E) onnvertices. All the edges are marked-aer —, denoting
agreements or disagreements respectively. For a vertetd *(v) be the set of vertices adjacenttwia +
edges, andi ~ (v) the set of vertices adjacent¥oia — edges.

Initially, note that our algorithm works im = O(1/¢) steps. We partition the vertices into almost
equal part®/1,V2, ..., V™ (each with©®(en) vertices) in an arbitrary way. In thHéh step, we place the ver-
tices ofV' into clusters. This is done with the aid of a sufficiently large, but constant-sized, random sample
S drawn from vertices outsidé'. (The random samples for different steps are chosen independently.) The
algorithm tries all possible ways in which all the samples can be clustered, and for each poossibility, it clus-
tersV' by placing each vertex in the cluster that maximizes the agreement with respect to the clustering of
the samples.

The analysis is based on the following rationale. Fix some optimal clustBramgya reference. Assume
that the considered clustering 8fmatches the clustering ® U--- UV'~! the algorithm has computed so
far and the optimal clustering oW +1U---UV™ (since we try all possible clusterings 8f we will also
try this particular clustering). In this case, using standard random sampling bounds, we can show that with
high probability over the choice @&, the clustering o¥/' chosen by the algorithm is quite close, in terms
of number of agreements, to the clusteringvbfoy the optimal clusterindd. This will imply that with
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constant probability our choice of ti&will allow us to place the vertices in such a way that the decrease in
the number of agreements with respect to an optimal clusteri@¢efa?) per step. Therefore, the algorithm
will output a solution that has at moSien?) fewer agreements compared to the optimal solution.

3.2 Performance analysis oMaxAg(k, €) algorithm.

Consider an arbitrary optim#étclustering of the grap® = (D, ...,Dk). We consider the subsets of each
cluster over our partition of vertices, defined as

D} = D;nV' forj=1,....k and
D' = (D.,...,D}) .

Let's also call the clustering output by our algorithth= (W,..., W) and define in the same fashion
subsets of our clustering:

W = wnV! forj=1,...,k and
W= (W, W) .

To be able to measure the performance of our algorithm at each step, we need to have an image of the
graph with all the clustered vertices up to the current point, while the rest of the vertices will be viewed
under the arbitrary clustering defined above. Intuitively, this image of the graph will enable us to bound
within each step the difference in agreements against the arbitrary clustering while taking into account the
clustering decisions made thus far. More formally, we define a sequertggnfl clusterings, such that

hybrid clusteringH', fori = 1,2,...,m+ 1, consists of the vertices as clustered by our algorithm up to (not
including) theith step and the rest of the vertices as clustered;by

H' = (Hi,...,H) ,

H = (3., 5,

H = (UZIW)u(UmD) forj=1,...k,
Hy = Hj\V'forj=1,... .k

Since we are going through all possible clusterings of the random sampl& skis the rest of the
analysis consider the loop iteration when the clustering of exactly matches how it is clustered in
H'2i.e., forj=1,2...k we haveS = Sn3,. Of course, taking the overall best clustering can only
help us.

The following lemma captures the fact that our random sample with high probability gives us a good
estimate on the number of agreements towards each cluster for most of the vertices considered.

Lemma 3.3. Fori =1...m, with probability at least — (5 /4m) on the choice of 'Sfor all but at most an
€/8 fraction of the vertices & V', the following holds for = 1,...k,

yr+(v)ms'j|_\r+(v)m9{ij| _ €
r V\Vi| |—32°

(3.1)

(Note that if @.1) above holds, then it also holds wih (v) in place ofl *(v).)

3The clustering in question might not match the actual final clustering of these vertices.
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Proof. Consider an arbitrary vertexc V' and the randomly chosen s8t= {uy,...,u;}. For eachj
{1,...,k}, we define the random variables

1, ifuert(vins;
_ 1 _ y ¢ &
foré=1,...1, o { 0, otherwise.
Clearlyy}_; af = [T (v)n S| and

Prioj =1] = W

Using an additive Chernoff bound we get that

€ €2 €0
Pr[ > 32] <2-exp<—2<32> r> = 32mk

wherer andmwere defined in our algorithm as= (32%/2¢?)log(64mk/e8) andm= [4/¢]. In particular,
r was chosen to precisely match this bound’s inequality requirements.
We can now use a standard probabilistic argument. Defining a random variable to count the number of
vertices not satisfying inequality8(1) and, using Markov’s inequality, we observe that for that particular
j, inequality @.1) holds for all but a fractiore /8 of verticesv € V', with probability at least 1- (5 /4mK).
Using a probability union bound the lemma easily follows. O

rrvns| - IF(v) N
r VAV

We defineagree(A) to be equal to the number of agreements inducel-blyisteringA. Now consider
the placement of the' vertices in clusterwli, .. ,Wii, as performed by the algorithm during siefpVe will
examine the number of agreements compared to the placement of the same verticés$' {ptimement
under the optimal clustering), more specifically we will bound the difference in the number of agreements
induced by placing vertices differently th&H. The following lemma formalizes this concept.

Lemma 3.4. Fori =0,...m, we haveigree(H' 1) > agree(D) —i- $€2n.

Proof. Observe thaH! = D andH™1 =W. The only vertices placed differently betweldh™! andH' are
the vertices irV'. Suppose that our algorithm places V' in clusterx, butv is placed in clustex’ under
H'. For such vertex the number of agreements towards clusters othenthamemains the same, therefore
we will focus on the number of agreements towards these two clusters and the number of agreements within
Vi
The number of agreements we could lose by thus misplacisg

diffye (V) = [T (V) NI =M (V) NI+ T (V) NI — [T~ (V) NI
Since our algorithm chose clusterby construction
M WVNSI+IT (VNS = MW NS +M (VNS (3.2)

If inequality (3.1) holds for vertex, using it forl ™ (v) andl" ~ (v) in both clusters, X, we obtain bounds on
the difference of agreements between our random sample’s clSst&sand the hybrid cluster®(,, 3.
Combining with inequality §.2) we get thadiffy (v) is at most(e/8)n. Therefore the total decrease in the
number of agreements by this type of vertices is at me&)n|V'| < (¢/8) -n?/m.
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By Lemma 3.3there are at moste/8)|V'| vertices inV' for which inequality 8.1) doesn't hold. The
total number of agreements originating from these vertices is at (ag8j|V'|n < (¢/8) -n?/m. Finally,
the total number of agreements from withnis at mostV'|?> < (&/4)-n?/m.

Overall the number of agreements that we could lose in one step of the algorithm is aterf®)st
n?/m< (£2/8)n°. The lemma follows by induction. O

The approximation guarantee ©heorem 3.Zasily follows fromLemma 3.4 We need to go through
all possiblek-clusterings of our random sample sets, a totédt"8floop iterations. The inner loop (ovéx
runsm times, and each of those iterations can be implement&{m) time. The claimed running time
bound of our algorithm thus follows. [ ]

4 PTAS for minimizing disagreements withk clusters

This section is devoted to the proof of the following theorem, which is our main result in this paper.
Theorem 4.1 (Main). For every k> 2, there is a PTAS foMINDISAGREEK].

The algorithm for MNDISAGREEK] will use the approximation scheme forAM AGREEK] as a sub-
routine. The latter already provides a very good approximation for the number of disagreements unless this
number is very small. So in the analysis, the main work is for the case when the optimum clustering is right
on most of the edges.

4.1 Idea behind the algorithm

The case of two clusters turns out to be a lot simpler and we use it to first illustrate the basic idea. By
the PTAS for maximization, we only need to focus on the case when the optimum clustering has only
OPT = yn? disagreements for some smalt- 0. We draw a random samp®&and try all partitions of it,

and focus on the run when we guess the right partiBea (S, S;), namely the way some fixed optimal
clusteringD partitionsS. Since the optimum has a very large number of agreements, there must exist a set
A of size at least1 — O(y))n such that each node i has a clear choice of which side it prefers to be on.
Moreover, for each node iA, we can find out its choice correctly (with high probability) based on edges
connecting it to nodes in the sam@e Therefore, we can find a clustering which agrees \itlon a set

A of at least 1- O(y) fraction of the nodes. We can then go through this clustering, and for each node in
parallel, switch it to the other side if that improves the solution to produce the final clustering. Nodes in
A have a clear preference therefore they won't get switched, thus they will remain clustered exactly as in
the optimum®D. The number of extra disagreements comparef) ton edges amongst nodes\Vn\ A is
obviously at most the number of those edges whioB(ig?n?). For edges connecting a nodes V \ A to

nodes inA, since we placed on the “better” side, and is placed exactly as i in the final clustering,

we can have at mo€2(yn) extra disagreements per node compared {his is the error introduced by the
edges from a node iA towards the misplaced nodes\in\ A). Therefore we get a clustering with at most
OPT +O(y?r?) = (1+O(y))OPT disagreements.

Our k-clustering algorithm fok > 2 uses a similar high-level approach, but is more complicated. The
main thing which breaks down compared to the- 2 case is the following. For two clusters,df has
agreements on a large, i.@ — O(y)), fraction of edges incident on a nodg(i. e. if u € A in the above
notation), then we are guaranteed to placexactly as inD based on the sample (when we guess its
correct clustering), since the other option will have much poorer agreement. This is not the case when
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k > 2, and one can get a large number of agreements by placing a node in say one of two possible clusters.
Therefore, it does not seem possible to argue that each nddis icorrectly placed, and then to use this to
finish off the clustering.

However, what weanshow is that nodes iA that are incorrectly placed, call this &tmust be in small
clusters ofD, and thus are few in number. Moreover, every nodA that falls in one of the large clusters
that we produce, is guaranteed to be correctly placed. (These facts are the comteminud 4.4) The
nodes inB still need to be clustered, and even a small additional number of mistakes per node in clustering
them is more than we can afford. We get around this predicament by noting that n@&lasdé \ B are in
different sets of clusters ii®. It follows that we can clustdB recursively in new clusters (and our algorithm
is guaranteed to terminate becalses clustered using fewer thdaclusters). The actual algorithm must
also deal with nodes outside and in particular decide which of these nodes are recursively clustered along
with B.

With this intuition in place, we now proceed to the formal specification of the algorithm that gives
a factor(1+ €) approximation for MNDISAGREEK] in Figure 2 We will use a small enough absolute
constant; in the algorithm; the choice; = 1/20 will work.

AlgorithmMinDisAg (k, €):
Input A labelingZ : (5) — {+,—} of the edges of the complete graph on vertex/set{1,...,n}.
Output A k-clustering of the graph, i. e., a partition\éfinto (at mostk partsvi,Vs,. .., V.

0. If k=1, return the obvious 1-clustering.

1. Run the PTAS for Mx AGREEK] from previous section on input with accuracy%.
Let ClusMax be thek-clustering returned.

2. Setf = &5, Pick a sampl&CV by drawing5';;§” vertices u.a.r with replacement.

1662°
3. ClusVal = 0; /* Keeps track of value of best clustering found so far*/
4. For each partitio®of SasS, USU---US,, perform the following steps:
(a) Initialize the cluster€; =S for 1 <i <Kk.
(b) ForeactueV\S )
(i) For eachi = 1,2,...,k, computepval>(u,i), defined to be 1S times the number of
agreements on edges connecting nodes irSif uis placed in clusteralong withS.
(ii) Let ju = arg maxpvalS(u,i), andvalS(u) % pvalS(u, ju).
(i) Placeu in clusterC;,, i. e.,C;, = Cj, U {u}.
(c) Compute the set of large and small clusters as
Large={j[1<j <Kk [Cj| > 5}, andSmall = {1,2,... k} \ Large.

Let| = |Large| ands= k—1| = |Small|. /* Note thats < k. */

(d) Clustetw dZEijesma”Cj into s clusters using recursive call to algorithvinDisAg (s, €/3).

Let the clustering output by the recursive calle= W) UW, U - - - UW,
(where some of th&/’s may be empty)
(e) LetC be the clustering comprising of theclusters{C;} jcLarge and{W'}1<i<s.
If the number of agreements 6fis at leasClusVal, updateClusVal to this value, and
updateClusMin = C.
5. Output the better of the two clusteringiisMax andClusMin.

Figure 2:MinDisAg(k, €) algorithm
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4.2 Performance analysis of the algorithm

We now analyze the approximation guarantee of the above algorithm. We need some notation. Let
A=A1UAU---UA

be anyk-clustering of the nodes M. Define the functioval™ : V — [0, 1] as follows:val”*(u) equals the
fraction of edges incident uparwhose labels agree with clusteridg(i. e., we count negative edges that are
cut by A and positive edges that lie within the safdor somei). Also definedisagr(A) to be the number
of disagreements ofl with respect to the labeling. (Clearlydisagr(A) = "1 S uev(1—val™(u)).) For a
nodeu eV and 1< i <k, let A4 denote the clustering obtained framby movingu to A; and leaving
all other nodes untouched. We define the functieal” : V x {1,2,... k} — [0,1] as follows: pval”(u,i)
equals the fraction of edges incident upothat agree with the clustering(“.

In the following, we fixD to be any optimak-clustering that partition¥ asV = D1 UD,U--- U Dy.
Let y be defined to beisagr(D)/n? so that the clusteringp hasyn? disagreements with respect to the input
labelingL.

Call a samples of nodes, each drawn uniformly at random with replacement, t@-geod if the nodes
in Sare distinct and for eachuc Vv andi € {1,2,...,k},

IpvalS(u,i) — pval®(u,i)| < « | (4.1)

for the partition3 of S, defined asS= {S;,..., S} with § = SND; (wherepval®(,-) is as defined in the
algorithm). The following lemma follows by a standard Chernoff and union bound argument similar to
Lemma 3.2

Lemma 4.2. The sample S picked in Step iggood with high probability, at least— O(1/+/n), wheref3
is defined inFigure 2

Therefore, in what follows we assume that the sar§te3-good. In the rest of the discussion we focus
on the run of the algorithm for the partitidhof Sthat agrees with the optimal partitidb, i.e.,S = SN D;.
(All lemmas stated apply for this run of the algorithm, though we don’'t make this explicit in the statements.)
Let (C1,Cy,...,Ck) be the clusters produced by the algorithm at the end of Step 4(c) on this run. Let’s begin
with the following simple observation.

Lemma 4.3. Suppose a node @& Ds is placed in cluster Cat the end of Step 4(b) for#£s,1 <r,s<Kk.
ThenpvalP(u,r) > pval®(u,s) — 28 = val®(u) — 28.

Proof. Note that sincel € Ds, vaID(u) = pvaID(u,S). By the B-goodness of (recall inequality ¢.1)),
pval®(u,s) > pval®(u,s) — B. Since we chose to plagein C; instead ofCs, we must haveval(u,r) >

pval>(u,s). By the B-goodness oS again, we havepvaID(u,r) > pval(u,r) — B. Combining these three
inequalities gives us the claim of the lemma. O

Define the set of nodes of low value in the optimal clustefin@s Tjq,, d:‘Ef{u | valP(u) < 1—c1/K?}.
The total number of disagreements is at least the number of disagreements induced by these low valued

“Note that in the algorithm we draw elements of the sample with replacement, but for the analysis, we can pre3enasists
of distinct elements, since this happens with high probability.

5Since our sample size &(logn) as opposed t@(1) that was used ihemma 3.3we can actually ensurd.(@) holds forevery
vertex with high probability.
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nodes, therefore ) 202 2
Tl < 2kdisagr(D) _ 2k’ < &m (4.2)
(=l (=L~ o

The following key lemma asserts that the large clusters produced in Step 4(c) are basically correct.

Lemma 4.4. Supposey < ¢1/16k3. LetlLarge C {1,2,...,k} be the set of large clusters as in Step 4(c) of
the algorithm. Then for eachd Large, G \ Tiow = Di \ Tiow, that is with respect to nodes of high value, C
precisely agrees with the optimal clustey.D

Proof. Choosé arbitrarily fromLarge. We will first prove the inclusio®; \ Tiow C Di \ Tiow. Suppose this is
not the case and there exists C; \ (D; UT ), Sou € Dj for somej #i. Sinceu ¢ T,,, we haveval® (u) >
1—¢;/k?, which impliespvalP(u, j) > 1—c1/k2. By Lemma 4.3this givespvalP(u,i) > 1—c¢;/k? — 2.
Therefore we have

[Di +Dj| -1

2(1—cy /K2 — B) < pvalP(u,i) +pvalP(u, j) < 2— .

where the second inequality follows from the simple but powerful observation that each edge connecting
uto a vertex inD; UDj is correctly classified in exactly one of the two placementa of theith and jth
clusters (when leaving every other vertex as in clustefing We conclude that bottD;| and |D;| are at
most: c

yDi\,\Dj\§2<k%+ﬁ>n+1 . (4.3)

What we have shown is thatife C; \ (D UTiow ), thenu € D; for somej with |Dj| < 2(c1/k?+ B)n+1. It
follows that|Ci \ (Di UTiow)| < 2(c1/k+ Bk)n+k. Therefore,

c n  4k?
D1l = 1G]~ [Tioul —2( ¢ +BK) n—k = 5 - Clvn

—2(%+Bk)n—k>2<%+[3>n+l

where the last inequality follows singe< c1/16k3, k>2,c1=1/20,p is tiny and by using a crude bound.
This contradicts4.3), and so we concludg \ Tigw C Dj \ Tiow-

We now consider the other inclusi@ \ Tiow € Ci \ Tiow- If @ nodev € D; \ (G U Ty ) is placed inCq

for g # i, then a similar argument to how we concluddd3( establishe$D;| < 2(c;/k?+ B)n+ 1, which is
impossible since we have shown 2 G\ Tjow, and hence

n  4k°yn C1
Dil > G| = |Tiow| > = — 2(7 )n 1,
’ |‘—’|‘ || ‘—Zk C]_ > k2+ﬁ +
where the last step follows similarly as above. O

The next lemma states that there is a clustering which is very close to optimum and agrees exactly with
our large clusters. This justifies the approach taken by the algorithm to find a near-optimal clustering by
focusing on the small clusters amof@,C,, .. .,Cy) and reclustering them recursively.

Lemma 4.5. Assumey < ¢;/16k3. There exists a clustering that partitions V as V= FUF, U - - - R, that
satisfies the following:

() K =C;forevery ic Large,
(i) The number of disagreements of the clustefirig at mostdisagr(J) < yn? (1+ 4C—k12 B+ %7)) :
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Proof. By the previous lemma, we know that the clusterthg (C, . ..,Cy) agrees with the optimal cluster-
ing D on the large clusters, except possibly for vertices belongidg,to To get the clustering claimed in
the lemma, we will start witlD and move any elements @f,, whereD and@ differ to the corresponding
cluster ofC. This will yield a clustering¥ which agrees witl on the large clusters, and we will argue that
only few extra disagreements are introduced in the process. The formal details follow.

Consider the clustering formed frofd by performing the following in parallel for each € T,,: If
w e C; andw € Dg for somer # s, movew to D;. LetF = FU--- UF be the resulting clustering. By
construction,

FNTiow =CNTow, for1 <i <Kk

Since we only move nodes iy, clearly /i \ Tiow = Di \ Tiow for 1 <i < k. By Lemma 4.4 however,
Ci\ Tiow = Di \ Tiow for i € Large; we conclude thal; = C; for eachi € Large.

Now the only extra edges that the clusterifigan get wrong, compared 1, are those incident upon
nodes inT,,,, and therefore

disagr(F) — disagr(D) < (n—1) Z (valP(w) —val¥(w)) . (4.4)

we

low

If a nodew belongs to the same clusterdhandD (i. e., we did not move it), then since no node outside
Tiow IS moved in obtainingF from D, we have

valZ(w) > valP(W) — [Tiow|/(N—1) . (4.5)

If we moved a nodav € T, from Ds to Dy, then byLemma 4.3we havepval(w,r) > val®(w) — 2.
Therefore for such a node

val®(w) > pval 2(W,r) — [Tiow| /(N — 1) > val (W) — 2B — [Tiow|/(N—1) . (4.6)

Combining @.4), (4.5 and @.6), we can conclude

disagr(J) - disagr(D) < (N 1) Tow (213 + M)
The claim now follows using the upper bound [@,,| from (4.2) (and using?/(n—1)2 < 2). 0

Lemma 4.6. If the optimal clustering hasyn? disagreements fay < ¢, /16k3, then the clusteringlusMin
found by the algorithm has at mogt?(1+ ¢/3) (1+ 4k?f /c1 + 8k*y/c3) disagreements.

Proof. We note that when restricted to the set of all edges except those entirely Withire set of agree-
ments of the clustering in Step 4(e) coincides precisely with that®f Letn; be the number of disagree-
ments ofF on edges that lie withiklV and letn, be the number of disagreements on all other edges. Since
W is clustered recursively, we know the number of disagreemertiissmt most

Nz +ng (1+%> < (np+ny) <1+§) )

The claim follows from the bound am + n, from Lemma 4.5 Part (ii). O

Theorem 4.7. For everye > 0, algorithmMinDisAg (k, €) delivers a clustering with number of disagree-
ments within a factof1+ ¢) of the optimum.
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Proof. Let OPT = yn? be the number of disagreements of an optimal clustering. The solGtigMax
returned by the maximization algorithm has at most

e2c2n? ) e%c2
OPT+ 2 —m (1+ 32(4y)

disagreements. The soluti@usMin has at mosyn?(1+ €/3)(1+ 4k?B/c, + 8k*y/c)) disagreements.

If v > ec?/32k4 the former is within(1+ ¢) of the optimal. Ify < ec?/32* (which also satisfies the
requirementy < ¢;/16k® we had inLemma 4.9, the latter clusterin@lusMin achieves approximation ratio
(14+¢/3)(1+¢/2) < (1+¢) (recall that < ec;/16k?). Thus the better of these two solutions is always an
(1+ €) approximation. O

To concludeTheorem 4.1we examine the running time ®linDisAg. Step 4 will be run fok!S =
nP(*/¢%) jterations. During each iteration, the placement of vertices is dor@(iogn) time. Finally,
observe that there is always at least one large cluster, therefore the recursive call is always done on at most
(k—1) clusters. It follows that the running time MinDisAg (k,€) can be described from the recurrence
T(k,ke) < no(k4/82>(nlogn+T(k— 1,¢/3)) from which we derive that the total running time is bounded by
n°P@/¢% Jogn.

5 Complexity on general graphs

So far, we have discussed theaMIAGREEK| and MINDISAGREE[K] problems on complete graphs. In this
section, we note some results on the complexity of these problems when the graph can be arbitrary. As we
will see, the problems become much harder in this case.

Theorem 5.1. There is a polynomial time factd.878 approximation algorithm foMAXAGREE?2] on
general graphs. For every k 3, there is a polynomial time factdd.7666 approximation algorithm for
MAXx AGREHK] on general graphs.

Proof. The bound for the 2-clusters case follows from the Goemans-Williamson algorithm AsrQuT
modified in the obvious way to account for the positive edges. Specifically, we can write a semidefinite
program relaxation for Mx AGREE2] similar to the GW semidefinite relaxation ofAM CuT: There is a
unit vector associated with each vertex, and the objective function, which now includes terms for the positive
edges, equals

1—(vi,v)) 1+ (vi,V)

* 2

(i,j) negative 2 (i,}) positive

The rounding is identical to the GW random hyperplane rounding. By the GW analysis, we know that the
probability thatv; andv; are separated by a random hyperplane is at le&8380imes(1/2)(1— (vi,V;)).
By a similar calculation, it can be shown that the probability thatndv; are not separated by a random
hyperplane is at least®78 times(1/2)(1+ (v,v;)). These facts imply that the expected agreement of the
clustering produced by random hyperplane rounding is at le8%8Qimes the optimum value of the above
semidefinite program, which in turn is at least as large as the maximum agreement with two clusters.

The bound fok > 3 is obtained by SwamylB] who also notes that slightly better bounds are possible
for3<k<5. O
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The MAX AGREE2] problem on general graphs includes as a special caseAxdMT problem. There-
fore, by the recent work on hardness of approximatingduT [15], the above approximation guarantee
for MAXAGREE?2] is the best possible, unless the Uniqgue Games Conjecture is false.

Theorem 5.2. There is a polynomial time @Q/logn) approximation algorithm fotMINDISAGREE[2] on
general graphs. For k= 3, MINDISAGREEK] on general graphs cannot be approximated within any finite
factor.

Proof. The bound for 2-clustering follows by the simple observation that MSAGREEZ2] on general
graphs reduces to M2CNFDELETION, i. €., given an instance of 2SAT, determining the minimum number

of clauses that have to be deleted to make it satisfiable. The latter problem ad@itglagn) approxima-

tion algorithm fL]. The result on MNDISAGREEK] for k > 3 follows by a reduction frork-coloring. When

k > 3, itis NP-hard to tell if a graph ik-colorable, and thus even given an instance ok BiISAGREEK]

with only negative edges, it is NP-hard to determine if the optimum number of disagreements is zero or
positive. O

Acknowledgments. We thank the anonymous referees for several useful comments on the presentation.
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