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Abstract: We continue the investigation of problems concerningcorrelation clusteringor
clustering with qualitative information, which is a clustering formulation that has been studied
recently (Bansal, Blum, Chawla (2004), Charikar, Guruswami, Wirth (FOCS’03), Charikar,
Wirth (FOCS’04), Alon et al. (STOC’05)). In this problem, we are given a complete graph
onn nodes (which correspond to nodes to be clustered) whose edges are labeled+ (for similar
pairs of items) and− (for dissimilar pairs of items). Thus our input consists of only qualitative
information on similarity and no quantitative distance measure between items. The quality of
a clustering is measured in terms of its number of agreements, which is simply the number of
edges it correctly classifies, that is the sum of number of− edges whose endpoints it places
in different clusters plus the number of+ edges both of whose endpoints it places within the
same cluster.

In this paper, we study the problem of finding clusterings that maximize the number of
agreements, and the complementary minimization version where we seek clusterings that min-
imize the number of disagreements. We focus on the situation when the number of clusters is
stipulated to be asmall constant k. Our main result is that for everyk, there is a polynomial
time approximation scheme for both maximizing agreements and minimizing disagreements.
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I. GIOTIS AND V. GURUSWAMI

(The problems are NP-hard for everyk≥ 2.) The main technical work is for the minimization
version, as the PTAS for maximizing agreements follows along the lines of the property tester
for Max k-CUT by Goldreich, Goldwasser, Ron (1998).

In contrast, when the number of clusters is not specified, the problem of minimizing dis-
agreements was shown to be APX-hard (Chawla, Guruswami, Wirth (FOCS’03)), even though
the maximization version admits a PTAS.

1 Introduction

In this work, we investigate problems concerning an appealing formulation of clustering calledcorrelation
clustering or clustering using qualitative informationthat has been studied recently in several works, in-
cluding [2, 3, 4, 5, 7, 6, 8, 17]. The basic setup here is to cluster a collection ofn items given as input only
qualitative information concerning similarity between pairs of items; specifically for every pair of items, we
are given a (Boolean) label as to whether those items are similar or dissimilar. We are not provided with any
quantitative information on the degree of similarity between elements, as is typically assumed in most clus-
tering formulations. These formulations take as input a metric on the items and then aim to optimize some
function of the pairwise distances of the items within and across clusters. The objective in our formulation
is to produce a partitioning into clusters that places similar objects in the same cluster and dissimilar objects
in different clusters, to the extent possible.

An obvious graph-theoretic formulation of the problem is the following: given a complete graph onn
nodes with each edge labeled either “+” (similar) or “−” (dissimilar), find a partitioning of the vertices into
clusters that agrees as much as possible with the edge labels. The maximization version, call it MAX AGREE,
seeks to maximize the number of agreements: the number of+ edges inside clusters plus the number of−
edges across clusters. The minimization version, denoted MINDISAGREE, aims to minimize the number of
disagreements: the number of− edges within clusters plus the number of+ edges between clusters.

In this paper, we study the above problems when the maximum number of clusters that we are allowed
to use is stipulated to be a fixed constantk. We denote the variants of the above problems that have this
constraint as MAX AGREE[k] and MINDISAGREE[k]. We note that, unlike most clustering formulations, the
MAX AGREE and MINDISAGREE problems are not trivialized if we do not specify the number of clusters
k as a parameter — whether the best clustering uses few or many clusters is automatically dictated by the
edge labels. However, the variants we study are also interesting formulations, which are well-motivated
in settings where the number of clusters might be an external constraint that has to be met, even if there
are “better” clusterings (i. e., one with more agreements) with a different number of clusters. Moreover,
the existing algorithms for, say MINDISAGREE, cannot be modified in any easy way to output a quality
solution with at mostk clusters. Thereforek-clustering variants pose new, non-trivial challenges that require
different techniques for their solutions.

In the above description, we assumed that every pair of items is labeled as+ or− in the input. However,
in some settings, the classifier providing the input might be unable to label certain pairs of elements as
similar or dissimilar. In these cases, the input is an arbitrary graphG together with± labels on its edges.
We can again study the above problems MAX AGREE[k] (resp. MINDISAGREE[k]) with the objective being
to maximize (resp. minimize) the number of agreements (resp. disagreements) on edges ofE (that is, we do
not count non-edges ofG as either agreements or disagreements). In situations where we study this more
general variant, we will refer to these problems as MAX AGREE[k] ongeneralgraphs and MINDISAGREE[k]
on general graphs. When we don’t qualify with the phrase “on general graphs,” we will always mean the
problems on complete graphs.
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Our main result in this paper is a polynomial time approximation scheme (PTAS) for MAX AGREE[k] as
well as MINDISAGREE[k] for k≥ 2. We now discuss prior work on these problems, followed by a more
detailed description of results in this paper.

1.1 Previous and related work

The above problem seems to have been first considered by Ben-Dor et al. [6] motivated by some compu-
tational biology questions. Later, Shamir et al. [17] studied the computational complexity of the problem
and showed that MAX AGREE (and hence also MINDISAGREE), as well as MAX AGREE[k] (and hence also
M INDISAGREE[k]) for eachk≥ 2 is NP-hard. They, however, used the term “Cluster Editing” to refer to
this problem.

Partially motivated by machine learning problems concerning document classification, Bansal, Blum,
and Chawla [5] also independently formulated and considered this problem. In particular, they initiated the
study of approximate solutions to MINDISAGREE and MAX AGREE, and presented a PTAS for MAX A-
GREEand a constant factor approximation algorithm for MINDISAGREE(the approximation guarantee was
a rather large constant, though). They also noted a simple factor 3 approximation algorithm for MINDIS-
AGREE[2]. Charikar, Guruswami, and Wirth [7] proved that MINDISAGREE is APX-hard, and thus one
cannot expect a PTAS for the minimization problem similar to the PTAS for MAX AGREE. They also gave a
factor 4 approximation algorithm for MINDISAGREEby rounding a natural LP relaxation using the region
growing technique. Recently, Ailon et al. [2] presented an elegant combinatorial factor 3 approximation
algorithm with a clever analysis for MINDISAGREE; they also get a factor 5/2 approximation using LP
techniques on top of their basic approach.

The problems on general graphs have also received attention. It is known that both MAX AGREE and
M INDISAGREE are APX-hard [5, 7]. Using a connection to minimum multicut, several groups [7, 9, 10]
presented anO(logn) approximation algorithm for MINDISAGREE. In fact, Emanuel and Fiat noted in [10]
that the problem is as hard to approximate as minimum multicut (and so this logn factor seems very hard to
improve). For the maximization version, algorithms with performance ratio better than 0.766 are known for
MAX AGREE [7, 18]. The latter work by Swamy [18] shows that a factor 0.7666 approximation can also be
achieved when the number of clusters is specified (i. e., for MAX AGREE[k] for k≥ 2).

Another problem that has been considered, let us call it MAX CORR, is that of maximizing correla-
tion, defined to be the difference between the number of agreements and disagreements. Charikar and
Wirth [8] (see also [16]) present a factorO(logn) approximation algorithm for the problem (called MAX QP)
of maximizing a quadratic form with general (possibly negative) coefficients, and use this to deduce a factor
O(logn) approximation for MAX CORR on complete graphs. (Their approximation guarantee holds also for
the weighted version of MAX CORR where there are nonnegative weights on the edges and the goal is to
maximize the difference between the sum of the weights of agreements minus the sum of weights of the dis-
agreements.) For MAX CORR on general graphs, anO(logθ(G)) approximation is presented in [3], where
θ(·) is the Lov́asz Theta Function. Alon et al. [3] also showed an integrality gap ofΩ(logn) for the stan-
dard semidefinite program relaxation of MAX QP (the largest such integrality gap for a graph is called the
Grothendieck constantof the graph — thus these results establish the Grothendieck constant of the complete
graph onn vertices to beΘ(logn)). Very recently, for some constantα > 0, Arora et al. [4] proved a factor
logα n inapproximability result for MAX QP and the weighted version of MAX CORR.
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1.2 Our results

The only previous approximation for MINDISAGREE[k] was a factor 3 approximation algorithm for the case
k = 2 [5]. The problems were shown to be NP-hard for everyk≥ 2 in [17] using a rather complicated reduc-
tion. In this paper, we will provide a much simpler NP-hardness proof and prove that both MAX AGREE[k]
and MINDISAGREE[k] admit a polynomial time approximation scheme for everyk≥ 2.1 The existence of
a PTAS for MINDISAGREE[k] is perhaps surprising in light of the APX-hardness of MINDISAGREEwhen
the number of clusters is not specified to be a constant (recall that the maximization versiondoesadmit a
PTAS even whenk is not specified).

It is often the case that minimization versions of problems are harder to solve compared to their com-
plementary maximization versions. The APX-hardness of MINDISAGREEdespite the existence of a PTAS
for MAX AGREE is a notable example. The difficulty in these cases is when the optimum value of the mini-
mization version is very small, since then even a PTAS for the complementary maximization problem need
not provide a good approximation for the minimization problem. In this work, we first give a PTAS for
MAX AGREE[k]. This algorithm uses random sampling and follows closely along the lines of the property
testing algorithm for Maxk-Cut due to [13].

It is interesting to note that our algorithm can also be used as a PTAS for the unbounded clusters case
by settingk = Ω(1/ε). It is then not hard to see by a cluster merging procedure that the solution obtained
by our algorithm is still within anε-factor of the optimal solution. Furthermore, since our algorithm runs
in linear time (on the number of vertices), it can be a more efficient alternative to the algorithm presented
in [5].

In the next section, we develop a PTAS for MINDISAGREE[k], which is our main result. The difficulty
in obtaining a PTAS for the minimization version is similar to that faced in the problem of MIN-k-SUM

clustering, which has the complementary objective function to METRICMAX -k-CUT. We remark that while
an elegant PTAS for METRICMAX -k-CUT due to de la Vega and Kenyon [12] has been known for several
years, only recently has a PTAS for MIN-k-SUM clustering been obtained [11]. We note that although the
case of MIN-2-SUM clustering was solved in [14] soon after the METRICMAX CUT algorithm of [12], the
casek > 2 appeared harder. Similarly to this, for MINDISAGREE[k], we are able to quite easily give a PTAS
for the 2-clustering version using the algorithm for MAX AGREE[2], but we have to work harder for the case
of k > 2 clusters. Some of the difficulty that surfaces whenk > 2 is detailed inSection4.1.

In Section5, we also note some results on the complexity of MAX AGREE[k] and MINDISAGREE[k]
on general graphs — these are easy consequences of connections to problems like Max Cut and graph
colorability.

Our work seems to nicely complete the understanding of the complexity of problems related to correla-
tion clustering. Our algorithms not only achieve excellent approximation guarantees but are also sampling-
based and are thus simple and quite easy to implement.

2 NP-hardness of MIN DISAGREE and MAX AGREE

In this section we show that the exact versions of problems we are trying to solve are NP-hard. An NP-
hardness result for MAX AGREE on complete graphs was shown in [5]; however their reduction crucially
relies on the number of clusters growing with the input size, and thus does not yield any hardness when
the number of clusters is a fixed constantk. It was shown by Shamir, Sharan, and Tsur [17], using a rather

1Our approximation schemes will be randomized and deliver a solution with the claimed approximation guarantee with high
probability. For simplicity, we do not explicitly mention this from now on.
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complicated reduction, that these problems are NP-hard for each fixed numberk≥ 2 of clusters. We will
provide a short and intuitive proof that MINDISAGREE[k] and MAX AGREE[k] are NP-hard.

Since MAX AGREE[k] and MINDISAGREE[k] have complementary objectives, it suffices to establish the
NP-hardness of MINDISAGREE[k]. We will first establish NP-hardness fork = 2, the case for generalk will
follow by a simple “padding” with(k−2) large collections of nodes with+ edges between nodes in each
collection and− edges between different collections.

Theorem 2.1. M INDISAGREE[2] on complete graphs is NP-hard.

Proof. We know that GRAPHM INBISECTION, namely partitioning the vertex set of a graph into two equal
halves so that the number of edges connecting vertices in different halves is minimized, is NP-hard. From
an instanceG of GRAPHM INBISECTION with n (even) vertices we obtain a complete graphG′ using the
following polynomial time construction.

Start withG and label all existing edges ofG as+ edges inG′ and non-existing edges as− edges. For
each vertexv create an additional set ofn vertices. Let us call these vertices together withv, a “group”Vv.
Connect with+ edges all pairs of vertices withinVv. All other edges with one endpoint inVv are labeled as
− edges (except those already labeled).

We will now show that any 2-clustering ofG′ with the minimum number of disagreements, has two
clusters of equal size with all vertices of any group in the same cluster. Consider some optimal 2-clustering
W with two clustersW1 andW2 such that|W1| 6= |W2| or not all vertices of some group are in the same cluster.
Pick some groupVv such that not all its vertices are assigned in the same cluster. Place all the vertices of
the group in the same cluster, obtainingW′ such that the size difference of the two clusters is minimized.
If such a group could not be found, pick a groupVv from the larger cluster and place it in the other cluster.
Since all groups contain the same number of vertices it must be the case that the size difference between the
two clusters is reduced.

Let us assume thatV1
v vertices of groupVv were inW1 andV2

v in W2. Without loss of generality, let us
assume that the clusteringW′ = (W′

1,W
′
2) above is obtained by moving theV1

v group vertices into clusterW2;

W′
1 = W1\V1

v , W′
2 = W2∪V1

v .

We now observe the following facts about the difference in the number of disagreements betweenW′

andW.

• Clearly the number of disagreements between vertices not inVv and between one vertex inV2
v with

one inW′
1 remains the same.

• The number of disagreements is decreased by|V1
v | · |V2

v | based on the fact that all edges withinVv are
+ edges.

• It is also decreased by at least|V1
v | · |W′

1|− (n−1) based on the fact that all but at mostn−1 edges
connecting vertices ofVv to the rest of the graph are− edges.

• The number of disagreements increases at most|V1
v | · |W2 \V2

v | because (possibly) all of the vertices
in V1

v are connected with− edges with vertices inW2 outside their group.

Overall, the difference in the number of disagreements is at most

|V1
v | · |W2\V2

v |− |V1
v | · |V2

v |− |V1
v | · |W′

1|+(n−1) .
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Notice that since
∣∣|W′

1|− |W′
2|

∣∣ was minimized it must be the case that|W′
1| ≥ |W2 \V2

v |. Moreover since a
group has an odd number of vertices and the total number of vertices ofG′ is even, it follows that|W′

1| 6=
|W2\V2

v | and thus|W′
1|− |W2\V2

v | ≥ 1. Therefore the total number of disagreements increases at most

(n−1)−|V1
v | · (|V2

v |+1) .

Since|V1
v |+ |V2

v | = n+ 1 andV1
v cannot be empty, it follows that|V1

v | · (|V2
v |+ 1) ≥ n and the number of

disagreements strictly decreases, contradicting the optimality ofW.
Therefore the optimal solution to the MINDISAGREE[2] instance has two clusters of equal size and

all vertices of any group are contained in a single cluster. It is now trivial to see that an optimal solution
to the GRAPHM INBISECTION problem can be easily derived from the MINDISAGREE[2] solution which
completes the reduction.

We now prove the NP-hardness for more than two clusters.

Theorem 2.2. For every fixed k≥ 2, there exists n such thatMAX AGREE[k] and M INDISAGREE[k] on
complete graphs are NP-hard.

Proof. Consider an instance of the MINDISAGREE[2] problem on a graphG with n vertices. Create a graph
G′ by adding toG, k−2 “groups” ofn+1 vertices each. All edges within a group are marked as+ edges,
while the remaining edges are marked as− edges.

Consider now ak-clustering ofG′ such that the number of disagreements is minimized. It is easy to
see that all the vertices of a group must make up one cluster. Also observe that any of the original vertices
cannot end up in one group’s cluster since that would inducen+ 1 disagreements, strictly more than it
could possibly induce in any of the 2 remaining clusters. Therefore the 2 non-group clusters are an optimal
2-clustering ofG. The theorem easily follows.

3 PTAS for maximizing agreement withk clusters

In this section we will present a PTAS for MAX AGREE[k] for every fixed constantk. Our algorithm follows
closely the PTAS for Maxk-CUT by Goldreich et al. [13]. In the next section, we will present our main
result, namely a PTAS for MINDISAGREE[k], using the PTAS for MAX AGREE[k] together with additional
ideas.2

Theorem 3.1. For every k≥ 2, there is a polynomial time approximation scheme forMAX AGREE[k].

Proof. We first note that for everyk≥ 2, and every instance of MAX AGREE[k], the optimum numberOPT
of agreements is at leastn2/16. Letn+ be the number of positive edges, andn− =

(n
2

)
−n+ be the number

of negative edges. By placing all vertices in a single cluster, we getn+ agreements. By placing vertices
randomly in one ofk clusters, we get an expected(1− 1/k)n− agreements just on the negative edges.
Therefore

OPT≥ max{n+,(1−1/k)n−} ≥
(1−1/k)

2

(
n
2

)
≥ n2/16 .

The proof now follows fromTheorem 3.2which guarantees a solution within additiveεn2 of OPT for
arbitraryε > 0.

2This is also similar in spirit, for example, to the PTAS for Min 2-sum clustering based on the PTAS for Metric Max CUT [14,
12].
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AlgorithmMaxAg(k,ε):
Input: A labelingL :

(n
2

)
→{+,−} of the edges of the complete graph on vertex setV.

Output: A k-clustering of the graph, i. e., a partition ofV into (at most)k partsW1,W2, . . . ,Wk.

1. Construct an arbitrary partition of the graph into roughly equal parts,(V1,V2, . . . ,Vm),m= d4
ε
e.

2. Fori = 1. . .m, choose uniformly at random with replacement fromV \V i , a subsetSi of size

r = 322

2ε2 log 64mk
εδ

.
3. SetW to be an arbitrary (or random) clustering.
4. For each clustering of each of the setsSi into (Si

1, . . . ,S
i
k) do

(a) Fori = 1. . .m do the following
(i) For each vertexv∈V i do

(1) For j = 1. . .k, let
β j(v) = |Γ+(v)∩Si

j |+∑l 6= j |Γ−(v)∩Si
l |.

(2) Placev in cluster argmaxjβ j(v).
(b) If the clustering formed by step (a) has more agreements thanW, setW to be that clustering.

5. OutputW.

Figure 1:MaxAg(k,ε) algorithm

Theorem 3.2. On inputε, δ and a labelingL of the edges of a complete graph G with n vertices, with
probability at least1− δ , algorithmMaxAg outputs a k-clustering of the graph such that the number of
agreements induced by this k-clustering is at leastOPT− εn2/2, whereOPT is the optimal number of
agreements induced by any k-clustering of G. The running time of the algorithm is n·kO(ε−3 log(k/(εδ ))).

The proof of this theorem is presented inSection3.2, and we now proceed to describe the algorithm in
Figure 1.

3.1 Overview

Our algorithm is given a complete graphG(V,E) onn vertices. All the edges are marked as+ or−, denoting
agreements or disagreements respectively. For a vertexv, let Γ+(v) be the set of vertices adjacent tov via +
edges, andΓ−(v) the set of vertices adjacent tov via− edges.

Initially, note that our algorithm works inm= O(1/ε) steps. We partition the vertices intom almost
equal partsV1,V2, . . . ,Vm (each withΘ(εn) vertices) in an arbitrary way. In theith step, we place the ver-
tices ofV i into clusters. This is done with the aid of a sufficiently large, but constant-sized, random sample
Si drawn from vertices outsideV i . (The random samples for different steps are chosen independently.) The
algorithm tries all possible ways in which all the samples can be clustered, and for each poossibility, it clus-
tersV i by placing each vertex in the cluster that maximizes the agreement with respect to the clustering of
the sampleSi .

The analysis is based on the following rationale. Fix some optimal clusteringD as a reference. Assume
that the considered clustering ofSi matches the clustering ofV1∪·· ·∪V i−1 the algorithm has computed so
far and the optimal clustering onV i+1∪ ·· · ∪Vm (since we try all possible clusterings ofSi , we will also
try this particular clustering). In this case, using standard random sampling bounds, we can show that with
high probability over the choice ofSi , the clustering ofV i chosen by the algorithm is quite close, in terms
of number of agreements, to the clustering ofV i by the optimal clusteringD. This will imply that with
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constant probability our choice of theSi will allow us to place the vertices in such a way that the decrease in
the number of agreements with respect to an optimal clustering isO(ε2n2) per step. Therefore, the algorithm
will output a solution that has at mostO(εn2) fewer agreements compared to the optimal solution.

3.2 Performance analysis ofMaxAg(k,ε) algorithm.

Consider an arbitrary optimalk-clustering of the graphD ≡ (D1, . . . ,Dk). We consider the subsets of each
cluster over our partition of vertices, defined as

Di
j ≡ D j ∩V i for j = 1, . . . ,k, and

Di ≡ (Di
1, . . . ,D

i
k) .

Let’s also call the clustering output by our algorithmW ≡ (W1, . . . ,Wk) and define in the same fashion
subsets of our clustering:

Wi
j ≡ Wj ∩V i for j = 1, . . . ,k, and

Wi ≡ (Wi
1, . . . ,W

i
k) .

To be able to measure the performance of our algorithm at each step, we need to have an image of the
graph with all the clustered vertices up to the current point, while the rest of the vertices will be viewed
under the arbitrary clustering defined above. Intuitively, this image of the graph will enable us to bound
within each step the difference in agreements against the arbitrary clustering while taking into account the
clustering decisions made thus far. More formally, we define a sequence ofhybrid clusterings, such that
hybrid clusteringH i , for i = 1,2, . . . ,m+1, consists of the vertices as clustered by our algorithm up to (not
including) theith step and the rest of the vertices as clustered byD;

H i ≡ (H i
1, . . . ,H

i
k) ,

Hi ≡ (Hi
1, . . . ,H

i
k) ,

H i
j ≡ (∪i−1

l=1W
l
j )∪ (∪m

l=iD
l
j) for j = 1, . . . ,k,

Hi
j ≡ H i

j \V i for j = 1, . . . ,k.

Since we are going through all possible clusterings of the random sample setsSi , for the rest of the
analysis consider the loop iteration when the clustering of eachSi exactly matches how it is clustered in
Hi ,3 i. e., for j = 1,2, . . . ,k, we haveSi

j = Si ∩Hi
j . Of course, taking the overall best clustering can only

help us.
The following lemma captures the fact that our random sample with high probability gives us a good

estimate on the number of agreements towards each cluster for most of the vertices considered.

Lemma 3.3. For i = 1. . .m, with probability at least1− (δ/4m) on the choice of Si , for all but at most an
ε/8 fraction of the vertices v∈V i , the following holds for j= 1, . . .k,∣∣∣∣∣ |Γ+(v)∩Si

j |
r

−
|Γ+(v)∩Hi

j |
|V \V i |

∣∣∣∣∣≤ ε

32
. (3.1)

(Note that if (3.1) above holds, then it also holds withΓ−(v) in place ofΓ+(v).)

3The clustering in question might not match the actual final clustering of these vertices.
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Proof. Consider an arbitrary vertexv ∈ V i and the randomly chosen setSi = {u1, . . . ,ur}. For eachj ∈
{1, . . . ,k}, we define the random variables

for ` = 1, . . . r, α
`
j =

{
1, if u` ∈ Γ+(v)∩Si

j ;
0, otherwise.

Clearly∑r
`=1 α`

j = |Γ+(v)∩Si
j | and

Pr[α l
j = 1] =

|Γ+(v)∩Hi
j |

|V \V i |
.

Using an additive Chernoff bound we get that

Pr

[∣∣∣∣∣ |Γ+(v)∩Si
j |

r
−
|Γ+(v)∩Hi

j |
|V \V i |

∣∣∣∣∣ >
ε

32

]
< 2·exp

(
−2

(
ε

32

)2
r

)
=

εδ

32mk

wherer andmwere defined in our algorithm asr = (322/2ε2) log(64mk/εδ ) andm= d4/εe. In particular,
r was chosen to precisely match this bound’s inequality requirements.

We can now use a standard probabilistic argument. Defining a random variable to count the number of
vertices not satisfying inequality (3.1) and, using Markov’s inequality, we observe that for that particular
j, inequality (3.1) holds for all but a fractionε/8 of verticesv∈V i , with probability at least 1− (δ/4mk).
Using a probability union bound the lemma easily follows.

We defineagree(A) to be equal to the number of agreements induced byk-clusteringA. Now consider
the placement of theV i vertices in clustersWi

1, . . . ,W
i
k, as performed by the algorithm during stepi. We will

examine the number of agreements compared to the placement of the same vertices underH i (placement
under the optimal clustering), more specifically we will bound the difference in the number of agreements
induced by placing vertices differently thanH i . The following lemma formalizes this concept.

Lemma 3.4. For i = 0, . . .m, we haveagree(H i+1)≥ agree(D)− i · 1
8ε2n2.

Proof. Observe thatH1 ≡ D andHm+1 ≡W. The only vertices placed differently betweenH i+1 andH i are
the vertices inV i . Suppose that our algorithm placesv∈V i in clusterx, but v is placed in clusterx′ under
H i . For such vertexv the number of agreements towards clusters other thanx,x′ remains the same, therefore
we will focus on the number of agreements towards these two clusters and the number of agreements within
V i .

The number of agreements we could lose by thus misplacingv is

diffxx′(v) = |Γ+(v)∩Hi
x′ |− |Γ+(v)∩Hi

x|+ |Γ−(v)∩Hi
x|− |Γ−(v)∩Hi

x′ | .

Since our algorithm chose clusterx, by construction

|Γ+(v)∩Si
x|+ |Γ−(v)∩Si

x′ | ≥ |Γ+(v)∩Si
x′ |+ |Γ−(v)∩Si

x| . (3.2)

If inequality (3.1) holds for vertexv, using it forΓ+(v) andΓ−(v) in both clustersx, x′, we obtain bounds on
the difference of agreements between our random sample’s clustersSi

x,S
i
x′ and the hybrid clustersHi

x,H
i
x′ .

Combining with inequality (3.2) we get thatdiffxx′(v) is at most(ε/8)n. Therefore the total decrease in the
number of agreements by this type of vertices is at most(ε/8)n|V i | ≤ (ε/8) ·n2/m.
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By Lemma 3.3there are at most(ε/8)|V i | vertices inV i for which inequality (3.1) doesn’t hold. The
total number of agreements originating from these vertices is at most(ε/8)|V i |n≤ (ε/8) ·n2/m. Finally,
the total number of agreements from withinVi is at most|V i |2 ≤ (ε/4) ·n2/m.

Overall the number of agreements that we could lose in one step of the algorithm is at most(ε/2) ·
n2/m≤ (ε2/8)n2. The lemma follows by induction.

The approximation guarantee ofTheorem 3.2easily follows fromLemma 3.4. We need to go through
all possiblek-clusterings of our random sample sets, a total ofkmr loop iterations. The inner loop (overi)
runsm times, and each of those iterations can be implemented inO(nr) time. The claimed running time
bound of our algorithm thus follows.

4 PTAS for minimizing disagreements withk clusters

This section is devoted to the proof of the following theorem, which is our main result in this paper.

Theorem 4.1 (Main). For every k≥ 2, there is a PTAS forM INDISAGREE[k].

The algorithm for MINDISAGREE[k] will use the approximation scheme for MAX AGREE[k] as a sub-
routine. The latter already provides a very good approximation for the number of disagreements unless this
number is very small. So in the analysis, the main work is for the case when the optimum clustering is right
on most of the edges.

4.1 Idea behind the algorithm

The case of two clusters turns out to be a lot simpler and we use it to first illustrate the basic idea. By
the PTAS for maximization, we only need to focus on the case when the optimum clustering has only
OPT = γn2 disagreements for some smallγ > 0. We draw a random sampleS and try all partitions of it,
and focus on the run when we guess the right partitionS= (S1,S2), namely the way some fixed optimal
clusteringD partitionsS. Since the optimum has a very large number of agreements, there must exist a set
A of size at least(1−O(γ))n such that each node inA has a clear choice of which side it prefers to be on.
Moreover, for each node inA, we can find out its choice correctly (with high probability) based on edges
connecting it to nodes in the sampleS. Therefore, we can find a clustering which agrees withD on a set
A of at least 1−O(γ) fraction of the nodes. We can then go through this clustering, and for each node in
parallel, switch it to the other side if that improves the solution to produce the final clustering. Nodes in
A have a clear preference therefore they won’t get switched, thus they will remain clustered exactly as in
the optimumD. The number of extra disagreements compared toD on edges amongst nodes inV \A is
obviously at most the number of those edges which isO(γ2n2). For edges connecting a nodeu∈V \A to
nodes inA, since we placedu on the “better” side, andA is placed exactly as inD in the final clustering,
we can have at mostO(γn) extra disagreements per node compared toD (this is the error introduced by the
edges from a node inA towards the misplaced nodes inV \A). Therefore we get a clustering with at most
OPT+O(γ2n2) = (1+O(γ))OPT disagreements.

Our k-clustering algorithm fork > 2 uses a similar high-level approach, but is more complicated. The
main thing which breaks down compared to thek = 2 case is the following. For two clusters, ifD has
agreements on a large, i. e.(1−O(γ)), fraction of edges incident on a nodeu (i. e. if u ∈ A in the above
notation), then we are guaranteed to placeu exactly as inD based on the sampleS (when we guess its
correct clustering), since the other option will have much poorer agreement. This is not the case when
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k > 2, and one can get a large number of agreements by placing a node in say one of two possible clusters.
Therefore, it does not seem possible to argue that each node inA is correctly placed, and then to use this to
finish off the clustering.

However, what wecanshow is that nodes inA that are incorrectly placed, call this setB, must be in small
clusters ofD, and thus are few in number. Moreover, every node inA that falls in one of the large clusters
that we produce, is guaranteed to be correctly placed. (These facts are the content ofLemma 4.4.) The
nodes inB still need to be clustered, and even a small additional number of mistakes per node in clustering
them is more than we can afford. We get around this predicament by noting that nodes inB andA\B are in
different sets of clusters inD. It follows that we can clusterB recursively in new clusters (and our algorithm
is guaranteed to terminate becauseB is clustered using fewer thank clusters). The actual algorithm must
also deal with nodes outsideA, and in particular decide which of these nodes are recursively clustered along
with B.

With this intuition in place, we now proceed to the formal specification of the algorithm that gives
a factor(1+ ε) approximation for MINDISAGREE[k] in Figure 2. We will use a small enough absolute
constantc1 in the algorithm; the choicec1 = 1/20 will work.

AlgorithmMinDisAg(k,ε):
Input: A labelingL :

(n
2

)
→{+,−} of the edges of the complete graph on vertex setV = {1, . . . ,n}.

Output: A k-clustering of the graph, i. e., a partition ofV into (at most)k partsV1,V2, . . . ,Vk.

0. If k = 1, return the obvious 1-clustering.

1. Run the PTAS for MAX AGREE[k] from previous section on inputL with accuracyε2c2
1

32k4 .
Let ClusMax be thek-clustering returned.

2. Setβ = c1ε

16k2 . Pick a sampleS⊆V by drawing5logn
β 2 vertices u.a.r with replacement.

3. ClusVal = 0; /* Keeps track of value of best clustering found so far*/
4. For each partitioñSof SasS1∪S2∪·· ·∪Sk, perform the following steps:

(a) Initialize the clustersCi ≡ Si for 1≤ i ≤ k.
(b) For eachu∈V \S

(i) For eachi = 1,2, . . . ,k, computepvalS̃(u, i), defined to be 1/|S| times the number of
agreements on edges connectingu to nodes inS if u is placed in clusteri along withSi .

(ii) Let ju = arg maxipvalS̃(u, i), andvalS̃(u) def= pvalS̃(u, ju).
(iii) Placeu in clusterCju, i. e.,Cju ≡Cju ∪{u}.

(c) Compute the set of large and small clusters as
Large≡ { j | 1≤ j ≤ k, |Cj | ≥ n

2k}, andSmall≡ {1,2, . . . ,k}\Large.
Let l = |Large| ands= k− l = |Small|. /* Note thats< k. */

(d) ClusterW
def=

⋃
j∈SmallCj into s clusters using recursive call to algorithmMinDisAg(s,ε/3).

Let the clustering output by the recursive call beW ≡W′
1∪W′

2∪·· ·∪W′
s

(where some of theW′
i ’s may be empty)

(e) LetC be the clustering comprising of thek clusters{Cj} j∈Large and{W′
i }1≤i≤s.

If the number of agreements ofC is at leastClusVal, updateClusVal to this value, and
updateClusMin≡ C.

5. Output the better of the two clusteringsClusMax andClusMin.

Figure 2:MinDisAg(k,ε) algorithm
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4.2 Performance analysis of the algorithm

We now analyze the approximation guarantee of the above algorithm. We need some notation. Let

A≡ A1∪A2∪·· ·∪Ak

be anyk-clustering of the nodes inV. Define the functionvalA : V → [0,1] as follows:valA(u) equals the
fraction of edges incident uponu whose labels agree with clusteringA (i. e., we count negative edges that are
cut byA and positive edges that lie within the sameAi for somei). Also definedisagr(A) to be the number
of disagreements ofA with respect to the labelingL. (Clearlydisagr(A) = n−1

2 ∑u∈V(1− valA(u)).) For a
nodeu∈V and 1≤ i ≤ k, let A(u,i) denote the clustering obtained fromA by movingu to Ai and leaving
all other nodes untouched. We define the functionpvalA : V ×{1,2, . . . ,k} → [0,1] as follows:pvalA(u, i)
equals the fraction of edges incident uponu that agree with the clusteringA(u,i).

In the following, we fixD to be any optimalk-clustering that partitionsV asV ≡ D1∪D2∪ ·· · ∪Dk.
Let γ be defined to bedisagr(D)/n2 so that the clusteringD hasγn2 disagreements with respect to the input
labelingL.

Call a sampleSof nodes, each drawn uniformly at random with replacement, to beα-good if the nodes
in Sare distinct4 and for eachu∈V andi ∈ {1,2, . . . ,k},

|pvalS̃(u, i)−pvalD(u, i)| ≤ α , (4.1)

for the partitionS̃ of S, defined as̃S= {S1, . . . ,Sk} with Si = S∩Di (wherepvalS̃(·, ·) is as defined in the
algorithm). The following lemma follows by a standard Chernoff and union bound argument similar to
Lemma 3.3.5

Lemma 4.2. The sample S picked in Step 2 isβ -good with high probability, at least1−O(1/
√

n), whereβ

is defined inFigure 2.

Therefore, in what follows we assume that the sampleSis β -good. In the rest of the discussion we focus
on the run of the algorithm for the partitioñSof S that agrees with the optimal partitionD, i. e.,Si = S∩Di .
(All lemmas stated apply for this run of the algorithm, though we don’t make this explicit in the statements.)
Let (C1,C2, . . . ,Ck) be the clusters produced by the algorithm at the end of Step 4(c) on this run. Let’s begin
with the following simple observation.

Lemma 4.3. Suppose a node u∈ Ds is placed in cluster Cr at the end of Step 4(b) for r6= s, 1≤ r,s≤ k.
ThenpvalD(u, r)≥ pvalD(u,s)−2β = valD(u)−2β .

Proof. Note that sinceu ∈ Ds, valD(u) = pvalD(u,s). By the β -goodness ofS (recall inequality (4.1)),
pvalS̃(u,s) ≥ pvalD(u,s)− β . Since we chose to placeu in Cr instead ofCs, we must havepvalS̃(u, r) ≥
pvalS̃(u,s). By theβ -goodness ofS again, we havepvalD(u, r) ≥ pvalS̃(u, r)−β . Combining these three
inequalities gives us the claim of the lemma.

Define the set of nodes of low value in the optimal clusteringD asTlow
def= {u | valD(u) ≤ 1− c1/k2}.

The total number of disagreements is at least the number of disagreements induced by these low valued

4Note that in the algorithm we draw elements of the sample with replacement, but for the analysis, we can pretend thatSconsists
of distinct elements, since this happens with high probability.

5Since our sample size isΩ(logn) as opposed toO(1) that was used inLemma 3.3, we can actually ensure (4.1) holds forevery
vertex with high probability.
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nodes, therefore

|Tlow| ≤
2k2disagr(D)

(n−1)c1
=

2k2γn2

(n−1)c1
≤ 4k2γn

c1
. (4.2)

The following key lemma asserts that the large clusters produced in Step 4(c) are basically correct.

Lemma 4.4. Supposeγ ≤ c1/16k3. LetLarge ⊆ {1,2, . . . ,k} be the set of large clusters as in Step 4(c) of
the algorithm. Then for each i∈ Large, Ci \Tlow ≡ Di \Tlow, that is with respect to nodes of high value, Ci

precisely agrees with the optimal cluster Di .

Proof. Choosei arbitrarily fromLarge. We will first prove the inclusionCi \Tlow ⊆Di \Tlow. Suppose this is
not the case and there existsu∈Ci \(Di∪Tlow), sou∈D j for somej 6= i. Sinceu /∈ Tlow, we havevalD(u)≥
1−c1/k2, which impliespvalD(u, j)≥ 1−c1/k2. By Lemma 4.3, this givespvalD(u, i)≥ 1−c1/k2−2β .
Therefore we have

2(1−c1/k2−β )≤ pvalD(u, i)+pvalD(u, j)≤ 2−
|Di |+ |D j |−1

n

where the second inequality follows from the simple but powerful observation that each edge connecting
u to a vertex inDi ∪D j is correctly classified in exactly one of the two placements ofu in the ith and jth
clusters (when leaving every other vertex as in clusteringD). We conclude that both|Di | and |D j | are at
most:

|Di |, |D j | ≤ 2
(c1

k2 +β

)
n+1 . (4.3)

What we have shown is that ifu∈Ci \ (Di ∪Tlow), thenu∈D j for somej with |D j | ≤ 2(c1/k2 +β )n+1. It
follows that|Ci \ (Di ∪Tlow)| ≤ 2(c1/k+βk)n+k. Therefore,

|Di | ≥ |Ci |− |Tlow|−2
(c1

k
+βk

)
n−k≥ n

2k
− 4k2γn

c1
−2

(c1

k
+βk

)
n−k > 2

(c1

k2 +β

)
n+1

where the last inequality follows sinceγ ≤ c1/16k3, k≥ 2, c1 = 1/20,β is tiny and by using a crude bound.
This contradicts (4.3), and so we concludeCi \Tlow ⊆ Di \Tlow.

We now consider the other inclusionDi \Tlow ⊆Ci \Tlow. If a nodev∈ Di \ (Ci ∪Tlow) is placed inCq

for q 6= i, then a similar argument to how we concluded (4.3) establishes|Di | ≤ 2(c1/k2 +β )n+1, which is
impossible since we have shownDi ⊇Ci \Tlow, and hence

|Di | ≥ |Ci |− |Tlow| ≥
n
2k

− 4k2γn
c1

> 2
(c1

k2 +β

)
n+1 ,

where the last step follows similarly as above.

The next lemma states that there is a clustering which is very close to optimum and agrees exactly with
our large clusters. This justifies the approach taken by the algorithm to find a near-optimal clustering by
focusing on the small clusters among(C1,C2, . . . ,Ck) and reclustering them recursively.

Lemma 4.5. Assumeγ ≤ c1/16k3. There exists a clusteringF that partitions V as V≡ F1∪F2∪·· ·Fk, that
satisfies the following:

(i) Fi ≡Ci for every i∈ Large,

(ii) The number of disagreements of the clusteringF is at mostdisagr(F)≤ γn2
(

1+ 4k2

c1

(
β + 2k2γ

c1

))
.
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Proof. By the previous lemma, we know that the clusteringC = (C1, . . . ,Ck) agrees with the optimal cluster-
ing D on the large clusters, except possibly for vertices belonging toTlow. To get the clusteringF claimed in
the lemma, we will start withD and move any elements ofTlow whereD andC differ to the corresponding
cluster ofC. This will yield a clusteringF which agrees withC on the large clusters, and we will argue that
only few extra disagreements are introduced in the process. The formal details follow.

Consider the clustering formed fromD by performing the following in parallel for eachw ∈ Tlow: If
w ∈ Cr andw ∈ Ds for somer 6= s, movew to Dr . Let F ≡ F1∪ ·· · ∪Fk be the resulting clustering. By
construction,

Fi ∩Tlow ≡Ci ∩Tlow, for 1≤ i ≤ k.

Since we only move nodes inTlow, clearly Fi \Tlow ≡ Di \Tlow for 1 ≤ i ≤ k. By Lemma 4.4, however,
Ci \Tlow ≡ Di \Tlow for i ∈ Large; we conclude thatFi ≡Ci for eachi ∈ Large.

Now the only extra edges that the clusteringF can get wrong, compared toD, are those incident upon
nodes inTlow, and therefore

disagr(F)−disagr(D)≤ (n−1) ∑
w∈Tlow

(valD(w)−valF(w)) . (4.4)

If a nodew belongs to the same cluster inF andD (i. e., we did not move it), then since no node outside
Tlow is moved in obtainingF from D, we have

valF(w)≥ valD(w)−|Tlow|/(n−1) . (4.5)

If we moved a nodew ∈ Tlow from Ds to Dr , then byLemma 4.3we havepvalD(w, r) ≥ valD(w)− 2β .
Therefore for such a nodew

valF(w)≥ pvalD(w, r)−|Tlow|/(n−1)≥ valD(w)−2β −|Tlow|/(n−1) . (4.6)

Combining (4.4), (4.5) and (4.6), we can conclude

disagr(F)−disagr(D)≤ (n−1)|Tlow|
(

2β +
|Tlow|
n−1

)
.

The claim now follows using the upper bound on|Tlow| from (4.2) (and usingn2/(n−1)2 ≤ 2).

Lemma 4.6. If the optimal clusteringD hasγn2 disagreements forγ ≤ c1/16k3, then the clusteringClusMin
found by the algorithm has at mostγn2(1+ ε/3)

(
1+4k2β/c1 +8k4γ/c2

1

)
disagreements.

Proof. We note that when restricted to the set of all edges except those entirely withinW, the set of agree-
ments of the clusteringC in Step 4(e) coincides precisely with that ofF. Let n1 be the number of disagree-
ments ofF on edges that lie withinW and letn2 be the number of disagreements on all other edges. Since
W is clustered recursively, we know the number of disagreements inC is at most

n2 +n1

(
1+

ε

3

)
≤ (n1 +n2)

(
1+

ε

3

)
.

The claim follows from the bound onn1 +n2 from Lemma 4.5, Part (ii).

Theorem 4.7. For everyε > 0, algorithmMinDisAg(k,ε) delivers a clustering with number of disagree-
ments within a factor(1+ ε) of the optimum.
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Proof. Let OPT = γn2 be the number of disagreements of an optimal clustering. The solutionClusMax
returned by the maximization algorithm has at most

OPT+
ε2c2

1n2

32k4 = γn2
(

1+
ε2c2

1

32k4γ

)
disagreements. The solutionClusMin has at mostγn2(1+ ε/3)

(
1+ 4k2β/c1 + 8k4γ/c2

1)
)

disagreements.
If γ > εc2

1/32k4, the former is within(1+ ε) of the optimal. Ifγ ≤ εc2
1/32k4 (which also satisfies the

requirementγ ≤ c1/16k3 we had inLemma 4.6), the latter clusteringClusMin achieves approximation ratio
(1+ε/3)(1+ε/2)≤ (1+ε) (recall thatβ ≤ εc1/16k2). Thus the better of these two solutions is always an
(1+ ε) approximation.

To concludeTheorem 4.1, we examine the running time ofMinDisAg . Step 4 will be run fork|S| =
nO(k4/ε2) iterations. During each iteration, the placement of vertices is done inO(nlogn) time. Finally,
observe that there is always at least one large cluster, therefore the recursive call is always done on at most
(k−1) clusters. It follows that the running time ofMinDisAg(k,ε) can be described from the recurrence
T(k,ε)≤ nO(k4/ε2)(nlogn+T(k−1,ε/3)) from which we derive that the total running time is bounded by
nO(9k/ε2) logn.

5 Complexity on general graphs

So far, we have discussed the MAX AGREE[k] and MINDISAGREE[k] problems on complete graphs. In this
section, we note some results on the complexity of these problems when the graph can be arbitrary. As we
will see, the problems become much harder in this case.

Theorem 5.1. There is a polynomial time factor0.878 approximation algorithm forMAX AGREE[2] on
general graphs. For every k≥ 3, there is a polynomial time factor0.7666approximation algorithm for
MAX AGREE[k] on general graphs.

Proof. The bound for the 2-clusters case follows from the Goemans-Williamson algorithm for MAX CUT

modified in the obvious way to account for the positive edges. Specifically, we can write a semidefinite
program relaxation for MAX AGREE[2] similar to the GW semidefinite relaxation of MAX CUT: There is a
unit vector associated with each vertex, and the objective function, which now includes terms for the positive
edges, equals

∑
(i, j) negative

1−〈vi ,v j〉
2

+ ∑
(i, j) positive

1+ 〈vi ,v j〉
2

.

The rounding is identical to the GW random hyperplane rounding. By the GW analysis, we know that the
probability thatvi andv j are separated by a random hyperplane is at least 0.878 times(1/2)(1−〈vi ,v j〉).
By a similar calculation, it can be shown that the probability thatvi andv j are not separated by a random
hyperplane is at least 0.878 times(1/2)(1+ 〈vi ,v j〉). These facts imply that the expected agreement of the
clustering produced by random hyperplane rounding is at least 0.878 times the optimum value of the above
semidefinite program, which in turn is at least as large as the maximum agreement with two clusters.

The bound fork≥ 3 is obtained by Swamy [18] who also notes that slightly better bounds are possible
for 3≤ k≤ 5.
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The MAX AGREE[2] problem on general graphs includes as a special case the MAX CUT problem. There-
fore, by the recent work on hardness of approximating MAX CUT [15], the above approximation guarantee
for MAX AGREE[2] is the best possible, unless the Unique Games Conjecture is false.

Theorem 5.2. There is a polynomial time O(
√

logn) approximation algorithm forM INDISAGREE[2] on
general graphs. For k≥ 3, M INDISAGREE[k] on general graphs cannot be approximated within any finite
factor.

Proof. The bound for 2-clustering follows by the simple observation that MINDISAGREE[2] on general
graphs reduces to MIN2CNFDELETION, i. e., given an instance of 2SAT, determining the minimum number
of clauses that have to be deleted to make it satisfiable. The latter problem admits anO(

√
logn) approxima-

tion algorithm [1]. The result on MINDISAGREE[k] for k≥ 3 follows by a reduction fromk-coloring. When
k≥ 3, it is NP-hard to tell if a graph isk-colorable, and thus even given an instance of MINDISAGREE[k]
with only negative edges, it is NP-hard to determine if the optimum number of disagreements is zero or
positive.

Acknowledgments. We thank the anonymous referees for several useful comments on the presentation.
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