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Abstract: It is well-known that constraint satisfaction problems (CSP) over an unbounded
domain can be solved in time nO(k) if the treewidth of the primal graph of the instance is
at most k and n is the size of the input. We show that no algorithm can do significantly
better than this treewidth-based algorithm, even if we restrict the problem to some special
class of primal graphs. Formally, let A be an algorithm solving binary CSP (i. e., CSP
where every constraint involves two variables). We prove that if there is a class G of graphs
with unbounded treewidth such that the running time of algorithm A is f (G)no(k/ logk) on
instances whose primal graph G is in G, where k is the treewidth of the primal graph G
and f is an arbitrary function, then the Exponential Time Hypothesis (ETH) fails. We
prove the result also in the more general framework of the homomorphism problem for
bounded-arity relational structures. For this problem, the treewidth of the core of the left-
hand side structure plays the same role as the treewidth of the primal graph above. Finally,
we use the results to obtain corollaries on the complexity of (Colored/Partitioned) Subgraph
Isomorphism.
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1 Introduction

Constraint Satisfaction Problems. Constraint satisfaction is a general framework that includes many
standard algorithmic problems such as satisfiability, graph coloring, database queries, etc. A constraint
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satisfaction problem (CSP) consists of a set V of variables, a domain D, and a set C of constraints, where
each constraint is a relation on a subset of the variables. The task is to assign a value from D to each
variable in such a way that every constraint is satisfied (see Definition 2.1 for the formal definition). For
example, 3SAT can be interpreted as a CSP instance where the domain is {0,1} and the constraints in
C correspond to the clauses (thus the arity of each constraint is 3). Another example is vertex coloring,
which can be interpreted as a CSP instance where the variables correspond to the vertices, the domain
corresponds to the set of colors, and there is a binary disequality constraint corresponding to each edge.
Notice that the domain size can be arbitrarily large in the CSP instances arising from vertex coloring (as
the coloring problem might involve any number of colors). In the present paper, we think of the domain
as a set whose size is not a fixed constant, but can be be arbitrarily large. This viewpoint is natural in the
context of various database query and artificial intelligence applications, where in fact that domain size
is usually much larger than the number of variables [24, 41].

Due to its generality, solving constraint satisfaction problems is NP-hard if we do not impose any
additional restrictions on the possible instances. Therefore, the main goal of the research on CSP is to
identify tractable classes and special cases of the general problem. The theoretical literature on CSP
investigates two main types of restrictions. The first type is to restrict the constraint language, that is,
the type of constraints that is allowed. This direction was initiated by the classical work of Schaefer [42]
and was subsequently pursued in, e. g., [7, 6, 5, 15, 31]. The second type is to restrict the structure
induced by the constraints on the variables. The primal graph (or Gaifman graph) of a CSP instance is
defined to be a graph on the variables of the instance such that there is an edge between two variables
if and only if they appear together in some constraint. Freuder [21] observed that if the treewidth of the
primal graph is k, then CSP can be solved in time nO(k). (Here n is the size of the input; in the cases we
are interested in in this paper, the input size is polynomially bounded by the domain size and the number
of variables.) The aim of this paper is to investigate whether there exists any other structural property of
the primal graph that can be exploited algorithmically to speed up the search for the solution.

Structural complexity of CSP. The first question is to understand what graphs make CSP polynomial-
time solvable. We have to be careful with the formalization of this question: if G is a graph with
k vertices, then any CSP instance with primal graph G can be solved in time nO(k) by brute force.
Therefore, restricting CSP to any fixed graph G makes it polynomial-time solvable. The real question is
which classes of graphs make the problem polynomial-time solvable. Formally, for a class G of graphs,
let CSP(G) be the class of all CSP instances where the primal graph of the instance is in G. Note that this
definition does not make any restriction on the constraint relations: it is possible that every constraint
has a different constraint relation. If G has bounded treewidth, then CSP(G) is polynomial-time solvable.
The converse is also true (under standard assumptions).

Theorem 1.1 (Grohe, Schwentick, Segoufin [29]; Grohe [26]). If G is a recursively enumerable class
of graphs, then CSP(G) is polynomial-time solvable if and only if G has bounded treewidth (assuming
FPT 6= W[1]).

The results in [29, 26] are actually more general and are stated in terms of the conjunctive query
and homomorphism problems (more on this in Section 5), but it is easy to see that those results im-
ply Theorem 1.1. The assumption FPT 6= W[1] is a standard hypothesis of parameterized complexity
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(cf. [14, 19]). Let us emphasize that the proof of Theorem 1.1 uses in an essential way the fact that the
domain size can be arbitrarily large.

Remark 1.2. We have to define what is meant by saying that an algorithm A solves CSP(G) in poly-
nomial time: what does A do on instances with G 6∈ G? We can (1) require that A reject every instance
with G 6∈ G, or (2) require that A correctly solve every instance with G 6∈ G, but not necessarily in
polynomial-time, or (3) the behavior of A is not specified on instances with G ∈ G (so it can return an
incorrect answer or may not even stop). The negative results are strongest if we rule out the possibility
of the weakest form, namely (3) (this is the way Theorem 1.1 is stated in [26]). However, in this paper
we state the results in a way that rule out the possibility of type (2) algorithms only. The reason why
we do this is because negative results for type (3) algorithms seem to require the assumption that G is
recursively enumerable, and if we make this assumption, then statements for type (2) and (3) algorithms
become equivalent (see Corollary 4.5 at the end of Section 4). Thus our results apply to type (2) algo-
rithms without any restriction on G and to type (3) algorithms with the additional assumption that G is
recursively enumerable. In the formal negative statements of this paper, we will explicitely specify what
type of algorithms are considered. To make the negative results stronger, we state them for the decision
version of the problem.

By Theorem 1.1, bounded treewidth is the only property of the primal graph that can make the
problem polynomial-time solvable. However, Theorem 1.1 does not rule out the possibility that there
is some structural property that may enable us to solve instances significantly faster than the treewidth-
based algorithm of [21], that is, for some class G of graphs with unbounded treewidth, CSP(G) could be
solved in time n f (k) where k is the treewidth and f is a slowly growing function such as logk. The main
result of this paper is that this is not possible; the nO(k)-time algorithm is essentially optimal for every
class of graphs, up to an O(logk) factor in the exponent. Thus, in our specific setting, there is no other
structural information beside treewidth that can be exploited algorithmically.

We prove our result under the Exponential Time Hypothesis (ETH) of Impagliazzo, Paturi, and
Zane [30]: we assume that there is no 2o(n)-time algorithm for n-variable 3SAT. This assumption is
stronger than FPT 6= W[1]. The formal statement of the main result of the paper is the following (we
denote by tw(G) the treewidth of G):

Theorem 1.3. If there is a class G of graphs with unbounded treewidth, an algorithm A, and a function f
such that A correctly decides every binary CSP instance and the running time is f (G)‖I‖o(tw(G)/ log tw(G))

for binary CSP(G) instances I with primal graph G ∈ G, then ETH fails.

Binary CSP(G) is the special case of CSP(G) where every constraint is binary, i. e., involves two
variables. Note that adding this restriction makes the statement of Theorem 1.3 stronger. Similarly,
allowing the multiplicative factor f (G) in the running time also makes the result stronger. We do not
make any assumption on f , for example, we do not require that f be computable.

The main technical tool of the proof of Theorem 1.1 in [29, 26] is the Excluded Grid Theorem of
Robertson and Seymour [40], which states that there is an unbounded function g(k) such that every
graph with treewidth at least k contains a g(k)×g(k) grid as minor. The basic idea of the proof in [26] is
to show that CSP(G) is not polynomial-time solvable if G contains every grid and then this result is used
to argue that CSP(G) is not polynomial for any G with unbounded treewidth, since in this case G contains
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every grid as minor. However, this approach does not work if we want a tighter lower bound, as in
Theorem 1.3. The problem is that the function g(k) is very slowly growing, e. g., o(logk), in the known
proofs of the Excluded Grid Theorem [12]. Therefore, if the only property of graphs with treewidth at
least k that we use is that they have g(k)×g(k) grid minors, then we immediately lose a lot: as CSP on
the g(k)×g(k) grid can be solved in time ‖I‖O(g(k)), no lower bound stronger than ‖I‖o(log tw(G)) can be
proved with this approach. Thus we need a characterization of treewidth that is tighter than the Excluded
Grid Theorem.

The almost-tight bound of Theorem 1.3 is made possible by a new characterization of treewidth
that is tight up to a logarithmic factor (Theorem 3.1). This result may be of independent interest. We
generalize the notion of minors the following way. An embedding of H into G is a mapping ψ from
V (H) to connected subsets of G such that if u,v ∈ V (H) are adjacent, then either ψ(u)∩ψ(v) 6= /0 or
there is an edge connecting a vertex of ψ(u) and a vertex of ψ(v). The depth of the embedding is at
most q if every vertex of G appears in the images of at most q vertices of H. Thus H has an embedding
of depth 1 into G if and only if H is a minor of G.

We characterize treewidth by the “embedding power” of the graph in the following sense. If q is
sufficiently large, then H has an embedding of depth q into G. For example, q = |V (H)| ≤ 2|E(H)|
(assuming H has no isolated vertices) is certainly sufficient. However, we show that if the treewidth
of G is at least k, then there is an embedding with depth q = O(|E(H)| logk/k), i. e., the depth is a
factor O(k/ logk) better than in the trivial bound of 2|E(H)|. We prove this result using the well-known
characterization of treewidth by separators and an O(logk) integrality gap bound for the sparsest cut.
The main idea of the proof of Theorem 1.3 is to use the embedding power of a graph with large treewidth
to simulate a 3SAT instance efficiently.

We conjecture that Theorem 1.3 can be improved by removing the logtw(G) factor from the expo-
nent; this will make the result tight.

Conjecture 1.4. There is no class G of graphs with unbounded treewidth, no function f , and no algo-
rithm A such that an algorithm A correctly decides every binary CSP instance and the running time is
f (G)‖I‖o(tw(G)) for binary CSP(G) instances I with primal graph G ∈ G.

This seemingly minor improvement would be very important for classifying the complexity of other
CSP variants [35]. However, it seems that a much better understanding of treewidth will be required be-
fore Theorem 1.3 can be made tight. At the very least, it should be settled whether there is a polynomial-
time constant-factor approximation algorithm for treewidth.

The homomorphism problem. A large part of the theoretical literature on CSP follows the notation
introduced by Feder and Vardi [15] and formulates the problem as a homomorphism between relational
structures. This more general framework allows a clean algebraic treatment of many issues. In Section 5,
we translate the lower bound of Theorem 1.3 into this framework (Theorem 5.1) to obtain a quantitative
version of the main result of Grohe in [26]. That is, the left-hand side classes of structures in the
homomorphism problem are not only characterized with respect to polynomial-time solvability, but we
prove almost-tight lower bounds on the exponent of the running time. As a special case, Theorem 5.1
immediately implies a generalization of Theorem 1.3 from binary CSP to constraints with any fixed
finite arity: for every fixed r ≥ 2, it can be used to give a lower bound on the running time of r-ary CSP
when restricted to a family of r-uniform hypergraphs.
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As observed by Grohe in [26], the complexity of the homomorphism problem does not depend
directly on the treewidth of the left-hand side structure, but rather on the treewidth of its core. Thus the
treewidth of the core appears in Theorem 5.1, the analog of Theorem 1.3. The reason why the notion
of core is irrelevant in Theorem 1.3 is that the way we defined CSP(G) allows the possibility that every
constraint relation appearing in the instance is different. In such a case, a nontrivial homomorphism
of the primal graph does not provide any apparent shortcut for solving the problem. Similarly to [26],
our result applies only if the left-hand side structure has bounded arity. In the unbounded-arity case,
issues related to the representation of the structures arise, which change the problem considerably. The
homomorphism problem with unbounded arity is far from understood: new classes of tractable structures
have recently been identified [27, 36, 37].

Subgraph problems. Tight lower bounds on the exponent under ETH have previously been obtained
in the framework of parameterized complexity. A basic result in this direction is due to Chen et al.:

Theorem 1.5 ([9, 10]). There is no f (k) ·no(k)-time algorithm for k-Clique, unless ETH fails.

For a number of problems parameterized by clique width, tight bounds on the exponent of the run-
ning time were given by Fomin et al. [20]. The Closest Substring problem was studied in [34], and it
was shown that in two specific settings, there are no algorithms with o(logk) and o(log logk) in the
exponents of their respective running times (unless ETH fails), and there are algorithms matching these
lower bounds. The class M[1] was introduced as a tool that uses ETH to provide an alternative way of
proving hardness in parameterized complexity [13, 18].

Theorem 1.5 can be interpreted as a lower bound for the Subgraph Isomorphism problem (given two
graphs G and H, decide if G is a subgraph of H). Using the color coding technique of Alon, Yuster, and
Zwick [2], it is possible to solve Subgraph Isomorphism in time f (|V (G)|) ·nO(tw(G)). Theorem 1.5 and
the fact that the treewidth of the k-clique is k−1 shows that it is not possible to improve the dependence
on tw(G) in the exponent to o(tw(G)), since in particular this would imply an f (k) ·no(k)-time algorithm
for the k-Clique problem. However, this observation does not rule out the possibility that there is a
special class of graphs (say, bounded degree graphs or planar graphs) where it is possible to improve
the exponent to o(tw(G)). In Section 6, we discuss lower bounds for Subgraph Isomorphism (and its
colored version) that follow from our CSP results.

Another important aspect of Theorem 1.5 is that it can be used to obtain lower bounds for other
parameterized problems. W[1]-hardness proofs are typically done by parameterized reductions from k-
Clique. It is easy to observe that a parameterized reduction implies a lower bound similar to Theorem 1.5
for the target problem, with the exact form of the lower bound depending on the way the reduction
changes the parameter. Many of the more involved reductions use edge selection gadgets (see e.g., [17]).
As the k-clique has Θ(k2) edges, this means that the reduction increases the parameter to Θ(k2) and we
can conclude that there is no f (k) · no(

√
k)-time algorithm for the target problem (unless ETH fails). If

we want to obtain stronger bounds on the exponent, then we have to avoid the quadratic blow-up of the
parameter and do the reduction from a different problem. One possibility is to reduce from Subgraph
Isomorphism, parameterized by the number of edges. In a reduction from Subgraph Isomorphism,
we need |E(G)| edge selection gadgets, which usually implies that the new parameter is Θ(|E(G)|).
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Therefore, the reduction and the following corollary obtained in Section 6 allows us to conclude that
there is no f (k) ·no(k/ logk)-time algorithm for the target problem:

Corollary 1.6. If Subgraph Isomorphism can be solved in time f (k)no(k/ logk), where f is an arbitrary
function and k = |E(G)| is the number of edges of the smaller graph G, then ETH fails.

Organization. Section 2 summarizes the notation we use. Section 3 presents the new characterization
of treewidth. Section 4 treats binary CSP and proves Theorem 1.3. Section 5 gives an overview of the
homomorphism problem and presents the main result in this context. In Section 6, we obtain hardness
results for subgraph problems as corollaries to the main result.

2 Preliminaries

Constraint satisfaction problems. We briefly recall some terminology related to CSP. For more back-
ground, see e. g., [25, 15].

Definition 2.1. An instance of a constraint satisfaction problem is a triple (V,D,C), where:

• V is a set of variables,

• D is a domain of values,

• C is a set of constraints, {c1,c2, . . . ,cq}. Each constraint ci ∈C is a pair 〈si,Ri〉, where:

– si is a tuple of variables of length mi, called the constraint scope, and

– Ri is an mi-ary relation over D, called the constraint relation.

For each constraint 〈si,Ri〉 the tuples of Ri indicate the allowed combinations of simultaneous values
for the variables in si. The length mi of the tuple si is called the arity of the constraint. We allow
repeated variables in the scope si, but this does not make the problem more general and can be usually
ignored. A solution to a constraint satisfaction problem instance is a function f from the set of variables
V to the domain D of values such that for each constraint 〈si,Ri〉 with si = (vi1 ,vi2 , . . . ,vim), the tuple
( f (vi1), f (vi2), . . . , f (vim)) is a member of Ri. In the decision version of CSP, we have to decide if a
solution for the given instance I exists. We say that an instance is binary if each constraint relation is
binary, i. e., mi = 2 for every constraint.1 In this paper, we consider only binary instances. It can be
assumed that the instance does not contain two constraints 〈si,Ri〉, 〈s j,R j〉 with si = s j, since in this case
the two constraints can be replaced by the constraint 〈si,Ri∩R j〉.

In the input, the relation in a constraint is represented by listing all the tuples of the constraint.
We denote by ‖I‖ the size of the representation of the instance I = (V,D,C). For binary constraint
satisfaction problems, we may assume that ‖I‖= O(V 2D2); by the argument in the previous paragraph,
we may assume that there are O(V 2) constraints and each constraint has a representation of length

1It is unfortunate that while some communities use the term “binary CSP” in the sense that each constraint is binary (as
does this paper), others use it in the sense that the variables are 0-1, i. e., the domain size is 2.
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O(D2). Furthermore, it can be assumed that |D| ≤ ‖I‖; elements of D that do not appear in any relation
can be removed.

Let I = (V,D,C) be a CSP instance and let V ′ ⊆V be a nonempty subset of variables. The instance
induced by V ′ is the CSP instance I[V ′] = (V ′,D,C′), where C′ ⊆C is the set of constraints whose scope
is contained in V ′. Clearly, if f is a solution of I, then f restricted to V ′ is a solution of I[V ′].

The primal graph of a CSP instance I = (V,D,C) is a graph G with vertex set V , where x,y∈V form
an edge if and only if there is a constraint 〈si,Ri〉 ∈C with x,y ∈ si. For a class G of graphs, we denote
by CSP(G) the problem restricted to instances where the primal graph is in G.

Graphs. We denote by V (G) and E(G) the set of vertices and the set of edges of the graph G, respec-
tively. Given a graph G, the line graph L(G) has one vertex for each edge of G, and two vertices of L(G)
are connected if and only if the corresponding edges in G share an endpoint. The line graph L(Kk) of
the complete graph Kk will appear repeatedly in the paper. Usually we denote the vertices of L(Kk) by
v{i, j} (1 ≤ i < j ≤ k), where v{i1, j1} and v{i2, j2} are adjacent if and only if {i1, j1}∩{i2, j2} 6= /0.

A tree decomposition of a graph G is a tuple (T,(Bt)t∈V (T )), where T is a tree and (Bt)t∈V (T ) is a
family of subsets of V (G) such that for each e ∈ E(G) there is a node t ∈ V (T ) such that e ⊆ Bt , and
for each v ∈ V (G) the set {t ∈ V (T ) | v ∈ Bt} is connected in T . That is, we represent the graph G
as a subgraph of the intersection graph of subtrees of the tree T . The sets Bt are called the bags of
the decomposition. The width of a tree-decomposition (T,(Bt)t∈V (T )) is max

{
|Bt | | t ∈ V (t)}−1. The

treewidth tw(G) of a graph G is the minimum of the widths of all tree decompositions of G. A class
G of graphs is of bounded treewidth if there is a constant c such that tw(G) ≤ c for every G ∈ G. The
concept of treewidth was introduced by Robertson and Seymour [39] and played a fundamental role in
the theory of graph minors. For more background on treewidth and its applications, the reader is referred
to [4, 32, 3].

Minors and embeddings. A graph H is a minor of G if H can be obtained from G by a sequence
of vertex deletions, edge deletions, and edge contractions. The following alternative definition will be
more relevant to our purposes. An embedding of H into G is a mapping ψ from V (H) to connected
subsets of G such that if u,v ∈ V (H) are adjacent, then either ψ(u)∩ψ(v) 6= /0 or there is an edge
connecting a vertex of ψ(u) and a vertex of ψ(v). The depth of a vertex v of G is the size of the set
{u ∈ V (H) | v ∈ ψ(u)} and the depth of the embedding is the maximum of the depths of the vertices.
It is easy to see that H is a minor of G if and only if H has an embedding of depth 1 into G, i. e., the
images are disjoint. To emphasize this connection, we will say that an embedding of depth 1 is a minor
mapping.

In an equivalent way, we can use minors to define embeddings of a certain depth. Given a graph G
and an integer q, we denote by G(q) the graph obtained by replacing every vertex with a clique of size q
and replacing every edge with a complete bipartite graph on q+q vertices. It is easy to see that H has an
embedding of depth q into G if and only if H is a minor of G(q). The mapping φ that maps each vertex
of G to the corresponding clique of G(q) will be called the blow-up mapping from G to G(q).
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3 Embedding in a graph with large treewidth

If H is a graph with n vertices, then obviously H has an embedding of depth n into any (nonempty) G. If
G has a clique of size k, then there is an embedding with depth at most n/k. Furthermore, even if G does
not have a k-clique subgraph, but it does have a k-clique minor, then there is such an embedding with
depth at most n/k. Thus a k-clique minor increases the “embedding power” of a graph by a factor of k.
The main result of the section is that large treewidth implies a similar increase in embedding power. The
following lemma states this formally:

Theorem 3.1. There are computable functions f1(G), f2(G), and a universal constant c such that for
every k ≥ 1, if G is a graph with tw(G)≥ k and H is a graph with |E(H)|= m ≥ f1(G) and no isolated
vertices, then H has an embedding into G with depth at most dcm logk/ke. Furthermore, such an
embedding can be found in time f2(G)mO(1).

Using the equivalent characterization by minors, the conclusion of Theorem 3.1 means that H is a
minor of G(q) for q = dcm logk/ke. In the rest of the paper, we mostly use this notation.

The value cm logk/k is optimal up to an O(logk) factor, i. e., it cannot be improved to o(m/k). To
see this, observe first that tw(G(q)) = Θ(q · tw(G)) (cf. [28]). We use the fact that the treewidth of a
graph H with m edges can be Ω(m) (e. g., bounded-degree expanders). Therefore, if tw(G) = k, then the
treewidth of G(q) for q = o(m/k) is o(m), making it impossible that H is a minor of G(q). Furthermore,
Theorem 3.1 does not remain true if m is the number of vertices of H (instead of the number of edges).
Let H be a clique on m vertices, and let G be a bounded-degree graph on O(k) vertices with treewidth
k. It is easy to see that G(q) has O(q2k) edges, hence H can be a minor of G(q) only if q2k = Ω(m2),
that is, q = Ω(m/

√
k). Note that it makes no sense to state in this form an analog of Theorem 3.1 where

m is the number of vertices of H: the worst case happens if H is an m-clique, and the theorem would
become a statement about embedding cliques. The requirement m≥ f1(G) is a technical detail: some of
the arguments in the embedding technique requires H to be large.

The graph L(Kk), i. e., the line graph of the complete graph plays a central role in the proof of
Theorem 3.1. The proof consists of two parts. In the first part (Section 3.1), we show that if tw(G)≥ k,
then a blow-up of L(Kk) is a minor of an appropriate blow-up of G. This part of the proof is based
on the characterization of treewidth by balanced separators and uses a result of Feige et al. [16] on the
linear programming formulation of separation problems. Similar ideas were used in [28]; some of the
arguments are reproduced here for the convenience of the reader. In the second part (Section 3.2), we
show that every graph is a minor of an appropriate blow-up of L(Kk).

3.1 Embedding L(Kk) in G

Given a nonempty set W of vertices, we say that a set S of vertices is a balanced separator (with respect
to W ) if |W ∩C| ≤ |W |/2 for every connected component C of G\S. A k-separator is a separator S with
|S| ≤ k. The treewidth of a graph is closely connected with the existence of balanced separators:

Lemma 3.2 ([38], [19, Section 11.2]).

(a) If the graph G has treewidth greater than 3k, then there is a set W ⊆ V (G) of size 2k + 1 having
no balanced k-separator.
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(b) If the graph G has treewidth at most k, then every W ⊆V (G) has a balanced (k +1)-separator.

A separation is a partition of the vertices into three classes (A,B,S) (S 6= /0) such that there is no edge
between A and B. Note that it is possible that A = /0 or B = /0. The sparsity of the separation (A,B,S)
(with respect to W ) is defined in [16] as

α
W (A,B,S) =

|S|
|(A∪S)∩W | · |(B∪S)∩W |

. (3.1)

We denote by αW (G) the minimum of αW (A,B,S) taken over every separation (A,B,S). It is easy to see
that for every G and nonempty W , 1/|W |2 ≤ αW (G) ≤ 1/|W | (the second inequality follows from the
fact that the separation (V (G)\W, /0,W ) has sparsity exactly 1/|W |). For our applications, we need a set
W such that αW (G) is close to the maximum possible, i. e., Ω(1/|W |). The following lemma shows that
the non-existence of a balanced separator can guarantee the existence of such a set W . The connection
between balanced separators and sparse separations is well known, see for example [16, Section 6].
However, in our parameter setting a simpler argument is sufficient.

Lemma 3.3. If |W |= 2k+1 and W has no balanced k-separator in a graph G, then αW (G)≥ 1/(4k+1).

Proof. Let (A,B,S) be a separation of sparsity αW (G); we may assume that |A∩W | ≥ |B∩W |, hence
|B∩W | ≤ k. If |S|> k, then

α
W (A,B,S)≥ k +1

(2k +1)2 ≥
1

4k +1
.

If |S| ≥ |(B∪S)∩W |, then

α
W (A,B,S)≥ 1

|(A∪S)∩W |
≥ 1

2k +1
.

Assume therefore that |(B∪ S)∩W | ≥ |S|+ 1. Let S′ be a set of k− |S| ≥ 0 arbitrary vertices of W \
(B∪ S). We claim that S∪ S′ is a balanced k-separator of W . Suppose that there is a component C of
G\ (S∪S′) that contains more than k vertices of W . Component C is either a subset of A or a subset of
B. However, C cannot be a subset of B, since |B∩W | ≤ k. On the other hand,

|(A\S′)∩W | ≤ 2k +1−|(B∪S)∩W |− |S′| ≤ 2k +1− (|S|+1)− (k−|S|)≤ k .

Remark 3.4. Lemma 3.3 does not remain true in this form for larger W . For example, let K be a clique
of size 3k + 1, let us attach k degree-one vertices to a distinguished vertex x of K, and let us attach a
degree-one vertex to every other vertex of K. Let W be the set of these 4k degree-one vertices. It is
not difficult to see that W has no balanced k-separator. On the other hand, S = {x} is a separator with
sparsity 1/(k ·3k), hence αW (G) = O(1/k2).

Let W = {w1, . . . ,wr} be a set of vertices. A concurrent vertex flow of value ε is a collection of |W |2
flows such that for every ordered pair (u,v) ∈W ×W , there is a flow of value ε between u and v, and
the total amount of flow going through each vertex is at most 1. A flow between u and v is a weighted
collection of u−v paths. A u−v path contributes to the load of vertex u, of vertex v, and of every vertex
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between u and v on the path. In the degenerate case when u = v, vertex u = v is the only vertex where
the flow between u and v goes through, that is, the flow contributes to the load of only this vertex.

The maximum concurrent vertex flow can be expressed as a linear program the following way. For
u,v ∈W , let Puv be the set of all u− v paths in G, and for each p ∈ Puv, let variable puv ≥ 0 denote the
amount of flow that is sent from u to v along p. Consider the following linear program:

maximize ε s. t.

∑
p∈Puv

puv ≥ ε ∀u,v ∈W

∑
(u,v)∈W×W

∑
p∈Puv:w∈p

puv ≤ 1 ∀w ∈V (LP1)

puv ≥ 0 ∀u,v ∈W, p ∈ Puv

The dual of this linear program can be written with variables {`uv}u,v∈W and {sv}v∈V the following way:

minimize ∑
v∈V

sv s. t.

∑
w∈p

sw ≥ `uv ∀u,v ∈W, p ∈ Puv (∗)

∑
(u,v)∈W×W

`uv ≥ 1 (∗∗) (LP2)

`uv ≥ 0 ∀u,v ∈W

sw ≥ 0 ∀w ∈V

We show that, in some sense, (LP2) is the linear programming relaxation of finding a separator with
minimum sparsity. If there is a separation (A,B,S) with sparsity αW (A,B,S), then (LP2) has a solution
with value at most αW (A,B,S). Set sv = αW (A,B,S)/|S| if v ∈ S and sv = 0 otherwise; the value of
such a solution is clearly αW (A,B,S). For every u,v ∈ W , set `uv = minp∈Puv ∑w∈p sw to ensure that
inequalities (*) hold. To see that (**) holds, notice first that `uv ≥ αW (A,B,S)/|S| if u ∈ A∪S, v ∈ B∪S,
as every u− v path has to go through at least one vertex of S. Furthermore, if u,v ∈ S and u 6= v, then
`uv ≥ 2αW (A,B,S)/|S| since in this case a u− v paths meets S in at least two vertices. The expression
|(A∪ S)∩W | · |(B∪ S)∩W | counts the number of ordered pairs (u,v) satisfying u ∈ (A∪ S)∩W and
v ∈ (B∪S)∩W , such that pairs with u,v ∈ S∩W , u 6= v are counted twice. Therefore,

∑
(u,v)∈W×W

`uv ≥ (|(A∪S)∩W | · |(B∪S)∩W |) · αW (A,B,S)
|S|

= 1 ,

which means that inequality (**) is satisfied.
The other direction is not true: a solution of (LP2) with value α does not imply that there is a

separation with sparsity at most α . However, Feige et al. [16] proved that it is possible to find a separation
whose sparsity is greater than that by at most a O(log |W |) factor (this result appears implicitly already
in [33]):
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Theorem 3.5 (Feige et al. [16], Leighton and Rao [33]). If (LP2) has a solution with value α , then there
is a separation with sparsity O(α log |W |).

We use (the contrapositive of) Theorem 3.5 to obtain a concurrent vertex flow in a graph with large
treewidth. This concurrent vertex flow can be used to find an L(Kk) minor in the blow-up of the graph
in a natural way: the flow paths correspond to the edges of Kk.

Lemma 3.6. Let G be a graph with tw(G) > 3k. There are universal constants c1,c2 > 0 such that
L(Kk)(dc1 logne) is a minor of G(dc2 logn·k logke), where n is the number of vertices of G.

Proof. Since G has treewidth greater than 3k, by Lemma 3.2(a), there is a subset W0 of size 2k +1 that
has no balanced k-separator. By Lemma 3.3, αW0(G) ≥ 1/(4k + 1) ≥ 1/(5k). Therefore, Theorem 3.5
implies that the dual linear program (LP2) has no solution with value less than 1/(c05k log(2k + 1)),
where c0 is the constant hidden by the big O notation in Theorem 3.5. By linear programming duality,
there is a concurrent flow of value at least α := 1/(c05k log(2k + 1)) connecting the vertices of W0; let
puv be a corresponding solution of (LP1).

Let W ⊆W0 be a subset of k vertices. For each pair of vertices (u,v) ∈W ×W , let us randomly and
independently choose dlnne paths Pu,v,1, . . . , Pu,v,dlnne of Puv (here ln denotes the natural logarithm of n),
where path p is chosen with probability

puv

∑p′∈Puv(p′)uv ≤
puv

α
. (3.2)

That is, we scale the values puv to obtain a probability distribution. Inequality (3.2) is true because the
values puv satisfy (LP1). The expected number of times a path p ∈ Puv is selected is

dlnne · puv

∑p′∈Puv(p′)uv ≤ dlnne · puv

α
.

Thus the expected number of paths selected from Puv that go through a vertex w is at most dlnne ·
∑p∈Puv:w∈p puv/α . Considering that we select dlnne paths for every pair (u,v) ∈W ×W , the expected
number µw of selected paths containing w is at most

dlnne · ∑
(u,v)∈W×W

∑
p∈Puv:w∈p

puv/α ,

which is at most dlnne/α , since the values puv satisfy (LP1). We use the following standard Chernoff
bound: for every r > µw, the probability that more than µw + r of the k2 lnn paths contain vertex w is at
most (µwe/r)r. Thus the probability that more than µw +10dlnne/α ≤ 11dlnne/α of the paths contain
w is at most (

µwe
10dlnne/α

)10dlnne/α

≤ (1/e)10lnn = 1/n10

(in the exponent, we used dlnne/α ≥ lnn, since it can be assumed that c0 ≥ 1 and lnn ≥ 1). Therefore,
with probability at least 1−1/n, each vertex w is contained in at most q := 11dlnn/αe paths. Note that
q ≤ dc2 logn · k logke, for an appropriate value of c2.
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Let φ be the blow-up mapping from G to G(q). For each path Pu,v,i in G, we define a path P′
u,v,i in G(q).

Let Pu,v,i = p1 p2 . . . pr. The path P′
u,v,i we define consists of one vertex of φ(p1), followed by one vertex

of φ(p2), . . . , followed by one vertex of φ(pr). The vertices are selected arbitrarily from these sets, the
only restriction is that we do not select a vertex of G(q) that was already assigned to some other path
P′

u′,v′,i′ . Since each vertex w of G is contained in at most q paths, the q vertices of φ(w) are sufficient to
satisfy all the paths going through w. Therefore, we can ensure that the k2dlnne paths P′

u,v,i are pairwise
disjoint in G(q).

The minor mapping from L(Kk)(dlnne) to G(q) is defined as follows. Let ψ be the blow-up mapping
from L(Kk) to L(Kk)(dlnne), and let v{1,2}, v{1,3} . . . , v{k−1,k} be the

(k
2

)
vertices of L(Kk), where v{i1,i2}

and v{ j1, j2} are adjacent if and only if {i1, i2}∩{ j1, j2} 6= /0. Let W = {w1, . . . ,wk}. The dlnne vertices
of ψ(vi, j) are mapped to the dlnne paths

P′
wi,w j,1, . . . ,P

′
wi,w j,dlnne .

Clearly, the images of the vertices are disjoint and connected. We have to show that this minor mapping
maps adjacent vertices to adjacent sets. If x ∈ ψ(vi1,i2) and x′ ∈ ψ(v j1, j2) are connected in L(Kk)(dlnne),
then there is a t ∈ {i1, i2}∩{ j1, j2}. This means that the paths corresponding to x and x′ both contain a
vertex of the clique φ(wt) in G(q), which implies that there is an edge connecting the two paths.

With the help of the following proposition, we can make a small improvement on Lemma 3.6: the
assumption tw(G) > 3k can be replaced by the assumption tw(G) ≥ k. This will make the result more
convenient to use.

Proposition 3.7. For every k ≥ 3, q ≥ 1, L(Kqk) is a subgraph of L(Kk)(2q2).

Proof. Let φ be a mapping from {1, . . . ,qk} to {1, . . . ,k} such that exactly q elements of {1, . . . ,qk} are
mapped to each element of {1, . . . ,k}. Let

v{i1,i2} (1 ≤ i1 < i2 ≤ qk)

be the vertices of L(Kqk) and

ut
{i1,i2} (1 ≤ i1 < i2 ≤ k,1 ≤ t ≤ 2q2)

be the vertices of L(Kk)(2q2), with the usual convention that two vertices are adjacent if and only if
the lower indices are not disjoint. Let U{i1,i2} be the clique {ut

{i1,i2} | 1 ≤ t ≤ 2q2}. Let us consider
the vertices of L(Kqk) in some order. If φ(i1) 6= φ(i2), then vertex v{i1,i2} is mapped to a vertex of
U{φ(i1),φ(i2)} that was not already used for a previous vertex. If φ(i1) = φ(i2), then v{i1,i2} is mapped to a
vertex U{φ(i1),φ(i1)+1} (where addition is modulo k). It is clear that if two vertices of L(Kqk) are adjacent,
then the corresponding vertices of L(Kk)(2q2) are adjacent as well. We have to verify that, for a given
i1, i2, at most 2q2 vertices of L(Kqk) are mapped to the clique U{i1,i2}. As |φ−1(i1)| and |φ−1(i2)| are both
q, there are at most q2 vertices v{ j1, j2} with φ( j1) = i1, φ( j2) = i2. Furthermore, if i2 = i1 +1, then there
are

(q
2

)
≤ q2 additional vertices v{ j1, j2} with φ( j1) = φ( j2) = i1 that are also mapped to U{i1,i2}. Thus at

most 2q2 vertices are mapped to each clique U{i1,i2}.
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Set k′ := 3k +1 ≤ 4k. Using Proposition 3.7 with q = 4, we get that L(Kk′)(dc1 logne/32) is a subgraph
of L(Kk)(dc1 logne). Thus if tw(G) ≥ k′, then we can not only find a blowup of L(Kk), but even a blowup
of L(Kk′). By replacing k′ with k, Lemma 3.6 can be improved the following way:

Lemma 3.8. Let G be a graph with tw(G) ≥ k. There are universal constants c1,c2 > 0 such that
L(Kk)(dc1 logne) is a minor of G(dc2 logn·k logke), where n is the number of vertices of G.

3.2 Embedding H in L(Kk)

As the second step of the proof of Theorem 3.1, we show that every (sufficiently large) graph H is a
minor of L(Kk)(q) for q = O(|E(H)|/k2).

Lemma 3.9. For every k > 1 there is a constant nk = O(k4) such that for every G with |E(G)|> nk and
no isolated vertices, the graph G is a minor of L(Kk)(q) for q = d130|E(G)|/k2e. Furthermore, a minor
mapping can be found in time polynomial in q and the size of G.

Proof. We may assume that k ≥ 5: otherwise the result is trivial, as q ≥ 2|E(G)| ≥ |V (G)| and L(Kk)(q)

contains a clique of size q. First we construct a graph G′ of maximum degree 3 that contains G as a
minor. This can be achieved by replacing every vertex v of G with a path on d(v) vertices (where d(v)
is the degree of v in G); now we can ensure that the edges incident to v use distinct copies of v from the
path. The new graph G′ has exactly 2|E(G)| vertices.

We show that G′, hence G, is a minor of L(Kk)(q). Take an arbitrary partition of V (G′) into
(k

2

)
classes V{i, j} (1 ≤ i < j ≤ k) such that |V{i, j}| ≤ d|V |/

(k
2

)
e for every i, j. Let v{i, j} (1 ≤ i < j ≤ k) be the

vertices of L(Kk), and let φ be the blow-up mapping from L(Kk) to L(Kk)(q).
The minor mapping ψ from G′ to L(Kk)(q) is defined the following way. First, if u ∈V{i, j}, then let

ψ(u) contain a vertex û from φ(v{i, j}). Observe that if edge e connects vertices u1 ∈V{i1, j1}, u2 ∈V{i2, j2}
and {i1, j1}∩ {i2, j2} 6= /0 holds, then û1 and û2 are adjacent. In order to ψ be a minor mapping, we
extends the sets ψ(u) to ensure that the endpoints of e are mapped to adjacent sets even if V{i1, j1} and
V{i2, j2} have disjoint indices.

Fix an arbitrary orientation of each edge of G′. For every quadruple (i1, j1, i2, j2) of distinct values
with i1 < j1, i2 < j2, let Ei1, j1,i2, j2 be the set of edges going from a vertex of V{i1, j1} to a vertex of V{i2, j2}.
Let us partition the set Ei1, j1,i2, j2 into k−4 classes E`

i1, j1,i2, j2 (` ∈ {1, . . .k}\{i1, j1, i2, j2}) in an arbitrary
way such that |E`

i1, j1,i2, j2 | ≤ d|Ei1, j1,i2, j2 |/(k− 4)e. For each edge −→uw ∈ E`
i1, j1,i2, j2 , we add a vertex of

φ(v{i1,`}) to ψ(u) and a vertex of φ(v{i2,`}) to ψ(w); these two vertices are neighbors with each other
and they are adjacent to û and ŵ, respectively. This ensures that ψ(u) and ψ(v) remain connected and
there is an edge between ψ(u) and ψ(w). After repeating this step for every edge, ψ is clearly a minor
mapping.

What remains to be shown is that the sets φ(v{x,y}) are large enough so that we can ensure that no
vertex of L(Kk)(q) is assigned to more than one ψ(u). Let us count how many vertices of φ(v{x,y}) are
used when the minor mapping is constructed as described above. First, the image of each vertex u in
V{x,y} uses one vertex û of φ(v{x,y}); together these vertices use at most |V{x,y}| ≤ d|V (G′)|/

(k
2

)
e vertices

from φ(v{x,y}). Furthermore, as described in the previous paragraph, for some quadruples (i1, j1, i2, j2)
and integer `, each edge of E`

i1, j1,i2, j2 requires the use of an additional vertex from φ(v{x,y}). More
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precisely, this can happen only if ` = x and y ∈ {i1, j1, i2, j2} or ` = y and x ∈ {i1, j1, i2, j2}. Thus the
total number of vertices used from φ(v{x,y}) is at most⌈ |V (G′)|(k

2

) ⌉
+ ∑

x∈{i1, j1,i2, j2}
|Ey

i1, j1,i2, j2 |+ ∑
y∈{i1, j1,i2, j2}

|Ex
i1, j1,i2, j2 |

≤ |V (G′)|(k
2

) +1+ ∑
x∈{i1, j1,i2, j2}

⌈ |Ei1, j1,i2, j2 |
k−4

⌉
+ ∑

y∈{i1, j1,i2, j2}

⌈ |Ei1, j1,i2, j2 |
k−4

⌉
≤ |V (G′)|(k

2

) + ∑
x∈{i1, j1,i2, j2}

|Ei1, j1,i2, j2 |
k−4

+ ∑
y∈{i1, j1,i2, j2}

|Ei1, j1,i2, j2 |
k−4

+2k4 .

(The term 2k4 generously bounds the rounding errors, since it is greater than the number of terms in the
sums.) The first sum counts only edges incident to some vertex of V{i, j} with x ∈ {i, j} and each edge
is counted at most once. Since each vertex has degree at most 3, the number of such edges is at most
3∑x∈{i, j} |V{i, j}|. Thus we can bound the first sum by

3(k−1)d|V (G′)|/
(k

2

)
e

k−4
≤ 12

⌈ |V (G′)|(k
2

) ⌉
(here we use k ≥ 5). A similar argument applies for the second sum above, hence the number of vertices
used from φ(v{x,y}) can be bounded as

|V (G′)|(k
2

) +24
⌈ |V (G′)|(k

2

) ⌉
+2k4 ≤ 25

|V (G′)|(k
2

) +2k4 +24

≤ 26
|V (G′)|(k

2

) = 52
|V (G′)|
k(k−1)

≤ 65
|V (G′)|

k2 = 130
|E(G)|

k2 ≤ q ,

what we had to show (in the second inequality, we used that |V (G′)|= 2|E| ≥ nk is sufficiently large; in
the third inequality, we used that k ≥ 5 implies k/(k−1)≤ 5/4).

Putting together Lemma 3.8 and Lemma 3.9, we can prove the main result of this section.

Proof of Theorem 3.1. Let k := tw(G), n := |V (G)|, and f1(G) := nk + k2dc1 logne, where nk is the
constant from Lemma 3.9 and c1 is the constant from Lemma 3.8. Assume that |E(H)| = m ≥ f1(G).
By Lemma 3.9, H is a minor of L(Kk)(q) for q := d130m/k2e and a minor mapping ψ1 can be found
in polynomial time. Let q′ := dq/dc1 lognee; clearly, H is a minor of L(Kk)(q′dc1 logne). Observe that m
is large enough such that 130m/k2 ≥ 1 and q/dc1 logne ≥ 1 holds, hence q′ ≤ c′ ·m/(k2 · logn) for an
appropriate constant c′.

By Lemma 3.8, L(Kk)(dc1 logne) is a minor of G(dc2 logn·k logke) and a minor mapping ψ2 can be found
in time f2(G) by brute force, for some function f2(G). Therefore, L(Kk)(q′dc1 logne) is a minor of
G(q′dc2 logn·k logke) and it is straightforward to obtain the corresponding minor mapping ψ3 from ψ2. We
may assume c2 logn ·k logk ≥ 1, otherwise the theorem automatically holds if we set c sufficiently large.
Since q′dc2 logn ·k logke ≤ c′ ·m/(k2 · logn) · (2c2 logn ·k logk)≤ cm logk/k for an appropriate constant
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c, we have that H is a minor of Gdcm logk/ke. The corresponding minor mapping is the composition
ψ3 ◦ψ1. Observe that each step can be done in polynomial time, except the application of Lemma 3.8,
which takes f2(G) time. Thus the total running time can be bounded by f2(G)mO(1).

4 Complexity of binary CSP

In this section, we prove our main result for binary CSP (Theorem 1.3). The proof relies in an essential
way on the so-called Sparsification Lemma for 3SAT:

Theorem 4.1 (Impagliazzo, Paturi, and Zane [30]). If there is a 2o(m)-time algorithm for m-clause 3SAT,
then there is a 2o(n)-time algorithm for n-variable 3SAT.

The main strategy of the proof of Theorem 1.3 is the following. First we show that a 3SAT formula
φ with m clauses can be turned into an equivalent binary CSP instance I of size O(m) (Lemma 4.2).
Here “equivalent” means that φ is satisfiable if and only if I has a solution. By the embedding result of
Theorem 3.1, for every G ∈ G, the primal graph of I is a minor of G(q) for an appropriate q. This implies
that we can simulate I with a CSP instance I′ whose primal graph is G (Lemma 4.3 and Lemma 4.4).
Now we can use the assumed algorithm for CSP(G) to solve instance I′, and thus decide the satisfiability
of formula φ . If the treewidth of G is sufficiently large, then the assumed algorithm is much better
than the treewidth-based algorithm. This translates into a 2o(m) algorithm for the 3SAT instance. By
Theorem 4.1, this means that n-variable 3SAT can be solved in time 2o(n), i. e., ETH fails.

Lemma 4.2. Given an instance of 3SAT with n variables and m clauses, it is possible to construct in
polynomial time an equivalent CSP instance with n + m variables, 3m binary constraints, and domain
size 3.

Proof. Let φ be a 3SAT formula with n variables and m clauses. We construct an instance of CSP as
follows. The CSP instance contains a variable xi (1≤ i≤ n) corresponding to the i-th variable of φ and a
variable y j (1≤ j ≤m) corresponding to the j-th clause of φ . Let D = {1,2,3} be the domain. We try to
describe a satisfying assignment of φ with these n+m variables. The intended meaning of the variables
is the following. If the value of variable xi is 1 (or 2), then this represents that the i-th variable of φ is
true (or false, respectively). If the value of variable y j is `, then this represents that the j-th clause of φ is
satisfied by its `-th literal. To ensure consistency, we add 3m constraints. Let 1 ≤ j ≤ m and 1 ≤ `≤ 3,
and assume that the `-th literal of the j-th clause is a positive occurrence of the i-th variable. In this case,
we add the binary constraint (xi = 1∨ y j 6= `): either xi is true or some other literal satisfies the clause.
Similarly, if the `-th literal of the j-th clause is a negated occurrence of the i-th variable, then we add the
binary constraint (xi = 2∨ y j 6= `). It is easy to verify that if φ is satisfiable, then we can assign values
to the variables of the CSP instance such that every constraint is satisfied, and conversely, if the CSP
instance has a solution, then φ is satisfiable.

If G1 is a minor of G2, then an instance with primal graph G1 can be easily simulated by an instance
with primal graph G2: each variable of G1 is simulated by a connected set of variables in G2 that are
forced to be equal.
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Lemma 4.3. Assume that G1 is a minor of G2. Given a binary CSP instance I1 with primal graph G1
and a minor mapping ψ from G1 to G2, it is possible to construct in polynomial time an equivalent
instance I2 with primal graph G2 and the same domain.

Proof. For simplicity, we assume that both G1 and G2 are connected; the proof can be easily extended
to the general case. If G2 is connected, then we may assume that ψ is onto. For each pair (x,y) such
that xy is and edge of G2, we add a constraint as follows. If ψ−1(x) = ψ−1(y), then the new constraint
is 〈(x,y),{(t, t) | t ∈ D}〉. If ψ−1(x) 6= ψ−1(y) and there is a constraint 〈(ψ−1(x),ψ−1(y)),R〉, then the
new constraint is 〈(x,y),R}〉. Otherwise, the new constraint is 〈(x,y),D×D}〉. Clearly, the primal graph
of I2 is G2.

Assume that I1 has a solution f1 : V1 → D. Then f2(v) = f1(ψ−1(v)) is a solution of I2. On the
other hand, if I2 has a solution f2 : V2 → D, then we claim that f2(x) = f2(y) holds if ψ−1(x) = ψ−1(y).
This follows from the way we defined the constraints of I2 and from the fact that ψ(x) is connected.
Therefore, we can define f1 : V1 → D as f1(v) = f2(v′), where v′ is an arbitrary member of ψ(v). To see
that a constraint ci = 〈(u,v),Ri〉 of I1 is satisfied, observe that there is a constraint 〈(u′,v′),Ri〉 in I2 for
some u′ ∈ ψ(u), v′ ∈ ψ(v). This means that ( f1(u), f1(v)) = ( f2(u′), f2(v′)) ∈ Ri, hence the constraint is
satisfied.

An instance with primal graph G(q) can be simulated by an instance with primal graph G if we set
the domain to be the q-tuples of the original domain.

Lemma 4.4. Given a binary CSP instance I1 = (V1,D1,C1) with primal graph G(q) (where G has no
isolated vertices), it is possible to construct (in time polynomial in the size of the output) an equivalent
instance I2 = (V2,D2,C2) with primal graph G and |D2|= |D1|q.

Proof. Let ψ be the blow-up mapping from G to G(q) and let D2 = Dq
1, i. e., D2 is the set of q-tuples

of D1. For every v ∈ V2, there is a natural bijection between the elements of D2 and the |D1|q possible
assignments f : ψ(v)→D1. For each edge v1v2 of G, we add a constraint cv1,v2 = 〈(v1,v2),Rv1,v2〉 to I2 as
follows. Let (x1,x2) ∈ D2×D2. For i = 1,2, let gi be the assignment of ψ(vi) corresponding to xi ∈ D2.
The two assignment together define an assignment g : ψ(v1)∪ψ(v2)→D on the union of their domains.
We define the relation Rv1,v2 such that (x1,x2) is a member of Rv1,v2 if and only if the corresponding
assignment g is a solution of the induced instance I[ψ(v1)∪ψ(v2)].

Assume that I1 has a solution f1 : V1 → D1. For every v ∈V2, let us define f2(v) to be the member of
D2 corresponding to the assignment f1 restricted to ψ(v). It is easy to see that f2 is a solution of I2: this
follows from the trivial fact that for every edge v1v2 in G, assignment f1 restricted to ψ(v1)∪ψ(v2) is a
solution of I1[ψ(v1)∪ψ(v2)].

Assume now that I2 has a solution f2 : V2 →D2. For every v∈V2, there is an assignment fv : ψ(v)→
D1 corresponding to f2(v). These assignments together define an assignment f1 : V1 → D1. We claim
that f1 is a solution of I1. Let cu,v = 〈(u,v),R〉 be an arbitrary constraint of I1. Assume that u ∈ ψ(u′)
and v ∈ ψ(v′). If u′ 6= v′, then u′v′ is an edge of G, hence there is a corresponding constraint cu′,v′ in I2.
The way cu′,v′ is defined ensures that f1 restricted to ψ(u′)∪ψ(v′) is a solution of I1[ψ(u′)∪ψ(v′)]. In
particular, this means that cu,v is satisfied in f1. If u′ = v′, then there is an edge u′w in G (since G has no
isolated vertices), and the corresponding constraint cu′,w ensures that f1 satisfies cu,v.

Now we are ready to prove the main result:
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Proof of Theorem 1.3. Assume that there is an algorithm A that correctly decides every CSP instance
and whose running time can be bounded by f (G)‖I‖tw(G)/(log tw(G)·ι(tw(G))) for instances with G ∈ G,
where ι is an unbounded function. We may assume that ι is nondecreasing and ι(1) ≥ 1. We present
a reduction from 3SAT to CSP(G) such that this reduction, together with the assumed algorithm A for
CSP(G), gives an algorithm B that is able to solve m-clause 3SAT in time 2o(m). Lemma 4.2, The-
orem 3.1, and Lemmas 4.3 and 4.4 show a way of solving a 3SAT instance by reducing it to a CSP
instance having a particular primal graph G. A crucial point of the reduction is how to select an appro-
priate G from G. The higher the treewidth of G, the more we gain in the running time. However, G has
to be sufficiently small such that some additional factors (such as the time spent on finding G) are not
too large.

Given an m-clause 3SAT formula φ and a graph G ∈ G, algorithm A can be used to decide the
satisfiability of φ in the following way. By Lemma 4.2, φ can be turned into a binary CSP instance I1
with O(m) constraints and domain size 3. Let H be the primal graph of I1. For simplicity, we assume
that G has no isolated vertices as they can be handled in a straightforward way. By Theorem 3.1, H is a
minor of G(q) for q = O(m logk/k) and we can find a minor mapping ψ in time f2(G)mO(1). Therefore,
by Lemma 4.3, I1 can be turned into an instance I2 with primal graph G(q), which, by Lemma 4.4, can
be turned into an instance I3 with primal graph G and domain size 3q. Now we can use algorithm A to
solve instance I3.

We shall refer to this way of solving the 3SAT instance φ as “running algorithm A[φ ,G].” Let us
determine the running time of A[φ ,G]. The two dominating terms are the time required to find the minor
mapping from H to G(q) and the time required to run A on I3. Note that ‖I3‖= O(|E(G)|32q): there are
|E(G)| constraints and each binary constraint contains at most 3q ·3q pairs. Let k be the treewidth of G.
The total running time of A[φ ,G] can be bounded by

f2(G)mO(1) + f (G)‖I3‖k/(logk·ι(k)) = f2(G)mO(1) + f (G)|E(G)|k/(logk·ι(k)) ·32qk/(logk·ι(k))

= f̂ (G)mO(1) ·2O(qk/(logk·ι(k))) = f̂ (G)mO(1) ·2O(m/ι(k))

for an appropriate function f̂ (G).
Let us fix an arbitrary easy-to-compute enumeration G1, G2, . . . of all graphs. Given an m-clause

3SAT formula φ , we first spend m steps to enumerate graphs from G; let G` (for some `≤ m) be the last
graph enumerated (we assume that m is sufficiently large such that ` ≥ 1). Next we start simulating the
algorithms A[φ ,G1], A[φ ,G2], . . . , A[φ ,G`] in parallel. When one of the simulations stops and returns
an answer, then we stop all the simulations and return the answer. It is clear that this algorithm will
correctly decide the satisfiability of φ .

We claim that there is a universal constant C such that for every s, there is an ms such that for every
m > ms, the running time of B is (m ·2m/s)C on an m-clause formula. Clearly, this means that the running
time of B is 2o(m).

Let ks be the smallest positive integer such that ι(ks)≥ s (as ι is unbounded, this is well defined). Let
is be the smallest positive integer such that Gis ∈ G and tw(Gis)≥ ks (as G has unbounded treewidth, this
is also well defined). Set ms sufficiently large such that ms ≥ f̂ (Gis) and the enumeration of all graphs
reaches Gis in less then ms steps. This means that if we run B on a 3SAT formula φ with m≥ms clauses,
then A[φ ,Gis ] will be one of the ` simulations started by B. The simulation of A[φ ,Gis ] terminates in

f̂ (Gis)m
O(1) ·2O(m/ι(tw(Gis ))) = m ·mO(1) ·2O(m/s)
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steps. Taking into account that we simulate ` ≤ m algorithms in parallel and all the simulations are
stopped not later than the termination of A[φ ,Gis ], the running time of B can be bounded polynomially
by the running time of A[φ ,Gis ]. Therefore, there is a constant C such that the running time of B is
(m ·2m/s)C, as required.

We close this section by proving a variant of Theorem 1.3, where the output of the algorithm is
unspecified for instances whose primal graph is not in G.

Corollary 4.5. If there is a recursively enumerable class G of graphs with unbounded treewidth, an
algorithm A, and a function f such that A decides every binary CSP(G) instance I with primal graph
G ∈ G in time f (G)‖I‖o(tw(G)/ log tw(G)), then ETH fails.

Proof. To show that Theorem 1.3 implies Corollary 4.5, it is sufficient to show that an algorithm A
satisfying the requirements of Corollary 4.5 implies that there exists an algorithm A′ satisfying the
requirements of Theorem 1.3. We construct A′ as follows. Given a CSP instance I with primal graph G
(not necessarily in G), we start running in parallel a brute force algorithm to decide I and an enumeration
of the members of the recursively enumerable class G. If the brute force algorithm stops before reaching
G in the enumeration, then we return its answer (which is correct). If the enumeration of G reaches
G before the brute force algorithms stops, we start simulating algorithm A on I, and return its answer
(which is correct, as we know that G ∈ G in this case). The overhead for instances with G ∈ G is just
a constant depending on G, so we get an algorithm that is correct for every G and for instances with
G ∈ G, the running time can be bounded by f ′(G)‖I‖o(tw(G)/ log tw(G)) for some function f ′.

5 Complexity of homomorphism

The aim of this section is to extend Theorem 1.3 to the framework of the homomorphism problem for
relational structures, which is the standard setting in which CSP has been studied in the theory literature.
As we shall see, in this formulation the complexity of the problem depends on the treewidth of the
core of the left-hand side. Furthermore, as in the result of Grohe [26], we limit ourselves to relational
structures of bounded arity.

Let us recall the standard definitions of the homomorphism problem (see [15, 26]). A vocabulary τ

is a finite set of relation symbols of specified arities. The arity of τ is the maximum of the arities of all
relational symbols it contains. A τ-structure A consists of a finite set A called the universe of A and for
each relation symbol R ∈ τ , say, of arity k, a k-ary relation RA ⊆ Ak. We say that a class C of structures
is of bounded arity if there is a constant r such that the arity of the vocabulary of every structure in C

is at most r. A homomorphism from a τ-structure A to a τ-structure B is a mapping h : A → B from
the universe of A to the universe of B that preserves all relations, that is, for all R ∈ τ , say, of arity k,
and all tuples (a1, . . . ,ak) ∈ RA it holds that (h(a1), . . . ,h(ak)) ∈ RB. Let ‖A‖ denote the length of the
representation of A. We assume that ‖A‖ = O(|τ|+ |A|+ ∑R∈τ |RA| · arity(R)) for a τ-structure A with
universe A.

A substructure of a relational structure A is a relational structure B over the same vocabulary τ as
A where B ⊆ A and RB ⊆ RA for all R ∈ τ . If B is a substructure of A, but A 6= B, then B is a proper
substructure of A.
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The notion of treewidth can be defined for relational structures the following way. A tree decom-
position of a τ-structure A is a pair (T,X), where T = (I,F) is a tree, and X = (Xi)i∈I is a family of
subsets of A such that for each R ∈ τ , say, of arity k, and each (a1, . . . ,ak) ∈ RA there is a node i ∈ I such
that {a1, . . . ,ak} ⊆ Xi, and for each a ∈ A the set {i ∈ I | a ∈ Xi} is connected in T . The width of the
decomposition (T,X) is max{|Xi| | i∈ I}−1, and the treewidth of A, denoted by tw(A), is the minimum
of the widths of all tree decompositions of A.

The primal graph of a structure A with vocabulary τ is a graph with vertex set A where two elements
a′,a′′ ∈ A are connected if and only if there is a relational symbol R ∈ τ , say, of arity k, such that R has
a tuple (a1, . . . ,ak) ∈ R with a′,a′′ ∈ {a1, . . . ,ak}. It can be shown that the treewidth of the primal graph
of A equals the treewidth of A (cf. [19, Proposition 11.27]).

A core of a relational structure A is a substructure A′ of A such that there is a homomorphism from
A to A′, but there is no homomorphism from A to a proper substructure of A′. We say that a relational
structure A is a core if it is its own core. It is well-known that the every relational structure A has a core
and the cores of A are isomorphic with each other. Let us denote by ctw(A) the treewidth of the core of
A.

Given a CSP instance I = (V,D,C), one can construct in polynomial time two relational structures
A and B with universe V and D, respectively, such that the solutions of I correspond to the homomor-
phisms from A to B. Thus the homomorphism problem of relational structures generalizes constraint
satisfaction. Formally, in the homomorphism problem the input is a pair (A,B) of relational structures
and the task is to decide whether there is a homomorphism from A (the left-hand side structure) to B
(the right-hand side structure). If A and B are two classes of relational structures, then we denote by
HOM(A,B) the restriction of the homomorphism problem where A ∈ A and B ∈ B. We denote by the
symbol− the class of all relational structures. Thus HOM(A,−) restricts the structure of the constraints,
while HOM(−,B) restricts the constraint language.

If ctw(A)≤ k, then the decision version of the homomorphism problem (A,B) can be solved by the
k-consistency algorithm in time nO(k) [26, 11] (where n is the length of the input, which is O(‖A‖+
‖B‖)). The main result of this section is that there is no class A of structures such that HOM(A,−) can
be solved significantly faster:

Theorem 5.1. Let A be a class of bounded-arity relational structures such that the treewidth of the
core is unbounded. If there is a function f and an algorithm A that correctly decides every instance of
HOM(−,−) and for instances of HOM(A,−) the running time is f (A)‖B‖o(ctw(A)/ logctw(A)), then ETH
fails.

For the proof, we need the following lemma:

Lemma 5.2. The following is true for every fixed rmax ≥ 1. Given a CSP instance I, a relational structure
A of arity at most rmax, and an isomorphism between the primal graph of I and the primal graph of the
core of A, it is possible to construct in polynomial time a relational structure B such that I has a solution
if and only if there is a homomorphism from A to B.

Proof. Let I = (V,D,C) be an instance of binary CSP with primal graph G. Let A be a structure whose
core A0 has a primal graph isomorphic to G. For ease of notation, from now on we use V both for the
set of variables of instance I and for the universe of A0. Let τ be the vocabulary of A. We construct a
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τ-structure B as follows. The universe B of B is V ×D. Let R ∈ τ be a relation symbol of arity r and
let RA0 be the corresponding relation in A0. To construct the relation RB, let us enumerate the r-tuples
of RA0 , and for each (v1, . . . ,vr) ∈ RA0 ⊆ V r, let us enumerate the solutions of the induced instance
I[{v1, . . . ,vr}]. If (v1, . . . ,vr) ∈ RA0 and f is a solution of I[(v1, . . . ,vr}], then let us add the r-tuple
((v1, f (v1)), . . . ,(vr, f (vr)) to RB. This completes the description of the relation RB and the structure
B. Observe that the size of RB is at most Drmax times the size of RA0 . Therefore, the size of B is
(‖A0‖|D|)O(rmax) and can be constructed in time polynomial in its size (for fixed rmax).

We show that A0 → B if and only if I has a solution. Since A0 is the core of A, it follows that A→ B
if and only if A0 → B.

Assume first that I has a solution f : V → D. We claim that φ(v) = (v, f (v)) is a homomorphism
from A0 to B. Indeed, if (v1, . . . ,vr) ∈ RA0 , then f restricted to {v1, . . . ,vr} is obviously a solution of
I[{v1, . . . ,vr}], hence ((v1, f (v1)), . . . ,(vr, f (vr))) ∈ RB by the definition of RB.

Assume now that φ is a homomorphism from A0 to B. Let ψ be the projection ψ((v,d)) = v from
V ×D to V . Observe that ψ is a homomorphism from B to A0. Therefore, ψ ◦φ is a homomorphism from
A0 to itself. Since A0 is core, ψ ◦φ is an isomorphism of A0. Thus we may assume that ψ ◦φ is identity:
otherwise let us replace φ by φ ◦ (ψ ◦φ)−1. If ψ ◦φ is the identity, then for every v ∈V , φ(v) = (v, f (v))
for some f (v) ∈ D. We claim that this function f : V → D is a solution of I. Let ci = 〈(u,v),Ri〉 be an
arbitrary constraint of I. Since uv is an edge of the primal graph G, there is an R ∈ τ such that RA0 has a
tuple (v1, . . . ,vr) containing both u and v. Therefore, (φ(v1), . . . ,φ(vr)) = ((v1, f (v1)), . . . ,(vr, f (vr))) ∈
RB. By the definition of RB, this means that f restricted to {v1, . . . ,vr} is a solution of I[{v1, . . . ,vr}]. In
particular, this means that f satisfies ci.

Proof of Theorem 5.1. Let A be a class of relational structures of maximum arity rmax. Let us fix an
enumeration of all relational structures. Let G be the class of graphs containing the primal graph of the
core of every structure A ∈A. Clearly, G has unbounded treewidth. We use algorithm A to construct an
algorithm for CSP(G) that contradicts Theorem 1.3.

Given an instance I = (V,D,C) of binary CSP with primal graph G, we proceed as follows. Let
n = ‖I‖. We start enumerating relational structures and for each structure we determine the core and
try to find an isomorphism between the primal graph of the core and G. We spend n steps on this task.
If after n steps no relational structure is found for which the primal graph of the core is isomorphic to
G, then we solve instance I by brute force. Otherwise, let A1, . . . , At be the structures satisfying this
requirement and let φ1, . . . , φt be the corresponding isomorphisms. We use Lemma 5.2 to compute
structures B1, . . . , Bt ; observe that the size of each Bi is polynomial in n. Then we start simulating
algorithm A in parallel on inputs (A1,B1), . . . , (At ,Bt). Whenever one of the simulation stops and
returns an answer, we stop all the simulations and return this answer.

It is clear that this way of deciding I always return a correct answer. We bound the running time as
follows. For every graph G ∈ G, let us define AG ∈ A to be the first structure in the enumeration that is
in A and for which the primal graph of the core is isomorphic to G, and let n(G) be the smallest n such
that the above algorithm reaches AG in the enumeration and constructs the corresponding isomorphism.
Note that AG and n(G) are well defined for every G ∈ G: by the definition of G, there has to be such
a structure AG. For instances I with length n < n(G), the running time can be bounded by a function
of G. For instances I with length n ≥ n(G), some number t ≤ n of simulations of A on (A1,B1), . . . ,
(At ,Bt) are started. For some 1 ≤ i ≤ t, we have Ai = AG ∈A. By the assumption on A, the simulation

THEORY OF COMPUTING, Volume 6 (2010), pp. 85–112 104

http://dx.doi.org/10.4086/toc


CAN YOU BEAT TREEWIDTH?

of (Ai,Bi) terminates in time

f (Ai)‖Bi‖o(ctw(Ai)/ logctw(Ai)) = f̂ (G)no(tw(G)/ log tw(G)) ,

for some function f̂ (G). At most n simulations are started and at most n steps are spent on enumeration
before the simulations. Thus the total running time is f̂ (G)no(tw(G)/ log tw(G)), contradicting Theorem 1.3.

As in Section 4 for CSP, we can obtain a corollary dealing with algorithms whose output is unspec-
ified for instances where the left-hand side structure is not in A. The proof is similar.

Corollary 5.3. Let A be a recursively enumerable class of bounded-arity relational structures such that
the treewidth of the core is unbounded. If there is a function f and an algorithm A that decides every
instance of HOM(A,−) in time f (A)‖B‖o(ctw(A)/ logctw(A)), then ETH fails.

6 Complexity of subgraph problems

Subgraph Isomorphism is a basic graph-theoretic problem: given graphs G and H, we have to decide if
G is a subgraph of H. That is, we have to find an injective mapping φ : V (G)→V (H) such that if u and v
are adjacent in the smaller graph G, then φ(u) and φ(v) are adjacent in the larger graph H. In the Colored
Subgraph Isomorphism problem, the input contains a (not necessarily proper) coloring of the vertices
of H and G. The task is to find a subgraph mapping φ that satisfies the additional constraint that for
every v ∈V (G), the color of φ(v) has to be the same as the color v. Partitioned Subgraph Isomorphism
is a special case of the colored version where every vertex of the smaller graph G has a distinct color
(i. e., we can assume that V (G) is the set of colors). In other words, the vertices of H are partitioned into
|V (G)| classes, and the image of each v ∈ V (G) is restricted to a distinct class of the partition. Clearly,
Partitioned Subgraph Isomorphism is a special case of Colored Subgraph Isomorphism, thus any lower
bound for the former problem is a lower bound for the latter as well.

It is not hard to observe that Partitioned Subgraph Isomorphism is essentially the same as binary
CSP. We can reduce an instance I = (V,D,C) of binary CSP to Partitioned Subgraph Isomorphism the
following way. Let G be the primal graph of I. We construct a graph H, whose vertex set is V (G)×D,
and the color of (v,d)∈V (G)×D is v. For every constraint 〈(u,v),Ruv〉 ∈C and every pair (du,dv)∈Ruv,
we add an edge connecting (u,du) and (v,dv) to H. Note that this construction is very similar to the proof
of Lemma 5.2.

Suppose that f : V →D is a satisfying assignment of I and consider the mapping φ(v) = (v, f (v)) for
every v∈V (G). It is clear that φ respects the colors and it is a subgraph mapping: if u and v are adjacent
in G, then there is a corresponding constraint 〈(u,v),Ruv〉 ∈C, and the fact that ( f (u), f (v))∈Ruv implies
that φ(u) and φ(v) are adjacent. On the other hand, suppose that φ is a subgraph mapping respecting
the colors. This means the first coordinate of φ(v) is v; let f (v) be the second coordinate of φ(v). It is
straightforward to verify that f is a satisfying assignment: for every constraint 〈(u,v),Ruv〉 ∈C, vertices
u and v are adjacent in G by the definition of the primal graph, and hence the fact that (u, f (u)) and
(v, f (v)) are adjacent implies that ( f (u), f (v)) ∈ Ruv.

The reduction from binary CSP to Partitioned Subgraph Isomorphism implies that any lower bound
for the former problem can be transfered to the latter. Thus Theorem 1.3 implies the following result:
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Corollary 6.1. If there is a class G of graphs with unbounded treewidth, an algorithm A, and an arbi-
trary function f such that A correctly decides every instance of Partitioned Subgraph Isomorphism and
the running time is f (G)no(tw(G)/ log tw(G)) for instances with the smaller graph G in G, then ETH fails.

Similarly, Corollary 4.5 can be translated the following way:

Corollary 6.2. If there is a recursively enumerable class G of graphs with unbounded treewidth, an
algorithm A, and an arbitrary function f such that A correctly decides every instance of Partitioned
Subgraph Isomorphism with the smaller graph G in G in time f (G)no(tw(G)/ log tw(G)), then ETH fails.

It is known that there are infinite recursively enumerable classes G of graphs such that for every
G ∈ G, both the treewidth and the number of edges are Θ(|V (G)|): for example, explicit constructions
of bounded-degree expanders give such classes (cf. [28]). Using this class G in Corollary 6.1, we get

Corollary 6.3. If Partitioned Subgraph Isomorphism can be solved in time f (G)no(k/ logk), where f is
an arbitrary function and k is the number of edges of the smaller graph G, then ETH fails.

Can we prove similar lower bounds for the more natural Subgraph Isomorphism problem (without
colors)? Unfortunately, the situation for Subgraph Isomorphism is much less understood. For example,
it is a major open question of parameterized complexity whether the k-Biclique problem (given a graph
H and an integer k, decide if H contains a Kk,k complete bipartite subgraph) is fixed-parameter tractable,
i. e., can be solved in time f (k) ·nO(1) for some function f depending only on k. Without answering this
question, we cannot prove the analog of Corollary 6.1 for Subgraph Isomorphism.

However, there is a special where we can prove lower bounds. Recall that a graph G is a core if it
has no homomorphism to any of its proper induced subgraphs, that is, if a mapping φ : V (G) → V (G)
satisfies that φ(u) and φ(v) are adjacent for every adjacent u,v ∈ V (G), then φ is bijective. We show
that if G is a core, then the colored and uncolored versions are equivalent (essentially, we use the same
argument as in the proof of Theorem 5.1). Consider an instance of Partitioned Subgraph Isomorphism
with smaller graph G and larger graph H. We may assume that if u,v∈V (G) are not adjacent, then H has
no edge whose endpoints are colored u and v, as such an edge could not be used in a solution. We claim
that if G is a core and there is a subgraph mapping φ from G to H, then there is a subgraph mapping
that respects the colors. Let ψ(v) be the color of φ(v). If u,v ∈ V (G) are adjacent, then φ(u)φ(v) is
an edge whose endpoints have colors ψ(u) and ψ(v), which means by our assumption that ψ(u) and
ψ(v) are adjacent in H. As H is a core, ψ is an isomorphism of H. Now φ(ψ−1(v)) is a subgraph
mapping that respects the colors. Therefore, the lower bounds for Partitioned Subgraph Isomorphism
can be transfered to the uncolored problem:

Corollary 6.4. Let G be a class of graphs with unbounded treewidth such that every graph in G is a
core. If there is an algorithm A and an arbitrary function f such that A correctly decides every instance
of Subgraph Isomorphism and the running time is f (G)no(tw(G)/ log tw(G)) for instances with the smaller
graph G in G, then ETH fails.

The analog of Corollary 6.2 for Subgraph Isomorphism can be obtained in a similar way. To prove
the analog of Corollary 6.3 for Subgraph Isomorphism, we need a family of graphs that are cores, sparse,
and treewidth is linear in the number of vertices. The following lemma provides such a family:
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Lemma 6.5. There is a recursively enumerable family of graph G such that every G ∈ G is a core, and
both the treewidth and the number of edges of G are Θ(|V (G)|).

Proof. Let G0 be a family of bounded-degree expanders, such as the one given by Gabber and Galil [22].
We will use the known result that the treewidth of such graphs is linear in the number of vertices
(cf. [28]). We may assume that the graphs in G0 are bipartite: subdividing every edge does not decrease
treewidth and increases the number of vertices only by a constant factor (as the graph has bounded
degree).

We will need the following auxiliary graphs. The graph Tn has n + 2(n− 1) vertices vi (1 ≤ i ≤ n)
and ui,1, ui,2 (2 ≤ i ≤ n), edges ui,1ui,2, viui,1, viui,2, vi+1ui,1, vi+1ui,2 for every 1 ≤ i ≤ n− 1, and the
edges v1vn, vnun−1,1. Graph Tn is not 3-colorable: in any 3-coloring, vertices vi and vi+1 would get the
same color, which is impossible, as v1 and vn are adjacent. Furthermore, it is easy to see that deleting
any vertex makes Tn 3-colorable. This immediately implies that Tn is a core: a homomorphism from Tn

to a proper induced subgraph of Tn would map a non-3-colorable graph to a 3-colorable graph, which is
impossible. Thus every homomorphism of Tn is an isomorphism. Moreover, it can be verified that any
such isomorphism maps vi to vi for every 1 ≤ i ≤ n. Note that vn having degree 4 cannot be mapped to
v1 having degree 3.

For every (bipartite) graph G0 ∈G0, we construct a graph G as follows. Let w1, . . . , wn be the vertices
of G0. We attach a copy of the graph T2n+1 to G0 by making wi and v2i adjacent for every 1 ≤ i ≤ n. It
is clear that the graph G obtained this way is sparse and has treewidth linear in the number of vertices.
Thus the only thing we have to verify is that G is a core. Note that every vertex of T2n+1 appears in a
triangle, and no other vertex of G appears in a triangle (since we assumed that G is bipartite). Therefore,
any homomorphism φ has to map the vertices of T2n+1 to vertices of T2n+1. Therefore, φ induces a
homomorphism of T2n+1, which means that φ(vi) = vi for every 1 ≤ i ≤ 2n. We claim that φ(wi) = wi

for every 1≤ i≤ n. Let w j be an arbitrary neighbor of wi. There is a path v2iwiw jv2 j of length 3 between
v2i and v2 j in G. Applying φ on this path gives a walk of length 3 between v2i and v2 j. As the distance of
v2i and v2 j is greater than 3 in T2n+1, this is only possible if the walk leaves T2n+1, implying φ(wi) = wi

and ψ(w j) = w j.

Putting together Corollary 6.4 and Lemma 6.5 immediately gives Corollary 1.6 stated in the intro-
duction.

7 Conclusions

We have proved that for binary CSP and for the homomorphism problem for relational structures of
bounded arity, the algorithms based on treewidth are almost optimal, in the sense that at most a log-
arithmic factor improvement is possible in the exponent of the running time. This improves the main
result of Grohe [26] by making it quantitative: [26] explored only whether there exists a polynomial-
time algorithm for a given a class of problems and no effort was made to determine the best possible
super-polynomial running time. The main technical tool in our paper is converting a 3SAT formula to a
CSP instance by embedding a graph into the blowup of another graph. To obtain this embedding, we use
characterizations of treewidth by separators and a dual characterization of separators. We avoid the use
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of the Excluded Grid Theorem (the main combinatorial tool in [26]), as it is not suitable for obtaining
tight results.

The results of this paper suggest two obvious directions for future work. First, one could try to
make Theorem 1.3 tight by removing the logarithmic factor from the exponent. We conjecture that this
is actually possible (Conjecture 1.4). An obvious approach to prove Conjecture 1.4 would be to prove
Theorem 3.1 without the logarithmic factor in the exponent; an inspection of our proof shows that if
Theorem 3.1 is true without the logarithmic factor, then Theorem 1.3 is true without the logarithmic
factor. More specifically, if we can get rid of logk in Theorem 3.1 for every G ∈ G for some class G

of graphs, then we can get rid of the logarithmic factor in Theorem 1.3 for the problem CSP(G). For
example, Theorem 3.1 is certainly true without logk if G is a clique, which implies that Theorem 1.3 is
true without the logarithmic factor if G is the class of all cliques. However, as shown very recently in [1],
Theorem 3.1 is tight: there are classes of graphs for which the logarithmic factor is needed. This does
not invalidate Conjecture 1.4, but it shows that its proof would require substantially different techniques
than the embedding method of this paper. Moreover, probably one should first settle the question of
whether there is a polynomial-time constant-factor approximation algorithm for treewidth.

The second direction would be to generalize the results to constraints with higher arities. Theo-
rem 1.3 is stated for binary CSP(G), but this means that the negative result also holds for the more
general problem where we do not assume that the instance is binary. However, for higher arity CSPs, we
can define the hypergraph of the instance the obvious way, and try to understand the complexity in terms
of this hypergraph instead of the primal graph. If the arities of the constraints are bounded by a constant,
then Theorem 5.1 characterizes the tractable hypergraph classes, as a hypergraph can be expressed by
a relational structure (where there is a distinct relation symbol for each hyperedge, to allow every con-
straint relation to be different). The problem changes considerably if the arities of the constraints are
unbounded [27, 24, 23, 8, 35, 37] due to issues related to the representation of constraints. The notions
of hypertree width and fractional hypertree width were introduced to obtain tractable classes not covered
by bounded treewidth. However, the situation is still far from understood.
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