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Abstract: Hashing is fundamental to many algorithms and data structures widely used in
practice. For the theoretical analysis of hashing, there have been two main approaches. First,
one can assume that the hash function is truly random, mapping each data item independently
and uniformly to the range. This idealized model is unrealistic because a truly random hash
function requires an exponential number of bits (in the length of a data item) to describe.
Alternatively, one can provide rigorous bounds on performance when explicit families of
hash functions are used, such as 2-universal or O(1)-wise independent families. For such
families, performance guarantees are often noticeably weaker than for ideal hashing.

In practice, however, it is commonly observed that simple hash functions, including
2-universal hash functions, perform as predicted by the idealized analysis for truly random

The paper is a merger of the following two conference papers: Why Simple Hash Functions Work: Exploiting the Entropy in
a Data Stream by M. M. and S. V., Proc. 19th Ann. ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 746-755,
2008, and Tight Bounds for Hashing Block Sources by K-M. C., Proc. 11th International Workshop, APPROX 2008, and 12th
International Workshop, RANDOM 2008, on Approximation, Randomization and Combinatorial Optimization: Algorithms and
Techniques, pages 357 - 370, 2008.
∗Work done when visiting U.C. Berkeley, supported by US-Israel BSF grant 2006060 and NSF grant CNS-0430336.
†Supported in part by NSF grants CCF-0915922 and IIS-0964473.
‡Work done in part while visiting U.C. Berkeley. Supported by ONR grant N00014-04-1-0478, NSF grant CCF-0133096,

US-Israel BSF grant 2002246, a Guggenheim Fellowship, and the Miller Institute for Basic Research in Science.

ACM Classification: F.2

AMS Classification: 68W20, 68Q25, 68W40

Key words and phrases: algorithms, hashing, extractors, derandomization, average case, pairwise
independence, Bloom filters, linear probing, balanced allocations

© 2013 Kai-Min Chung, Michael Mitzenmacher, and Salil Vadhan
cb Licensed under a Creative Commons Attribution License (CC-BY) DOI: 10.4086/toc.2013.v009a030

http://dx.doi.org/10.4086/toc
http://dl.acm.org/citation.cfm?id=1347164
http://dl.acm.org/citation.cfm?id=1347164
http://dl2.acm.org/citation.cfm?id=1429822
http://dl2.acm.org/citation.cfm?id=1429822
http://dl2.acm.org/citation.cfm?id=1429822
http://theoryofcomputing.org/copyright2009.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4086/toc.2013.v009a030


KAI-MIN CHUNG, MICHAEL MITZENMACHER, AND SALIL VADHAN

hash functions. In this paper, we try to explain this phenomenon. We demonstrate that
the strong performance of universal hash functions in practice can arise naturally from a
combination of the randomness of the hash function and the data. Specifically, following
the large body of literature on random sources and randomness extraction, we model the
data as coming from a “block source,” whereby each new data item has some “entropy”
given the previous ones. As long as the Rényi entropy per data item is sufficiently large, it
turns out that the performance when choosing a hash function from a 2-universal family is
essentially the same as for a truly random hash function. We describe results for several
sample applications, including linear probing, chained hashing, balanced allocations, and
Bloom filters.

Towards developing our results, we prove tight bounds for hashing block sources, deter-
mining the entropy required per block for the distribution of hashed values to be close to
uniformly distributed.

1 Introduction

Hashing is at the core of many fundamental algorithms and data structures, including all varieties of hash
tables [20], Bloom filters and their many variants [7], summary algorithms for data streams [21], and
many others. Traditionally, applications of hashing are analyzed as if the hash function is a truly random
function (a. k. a. “random oracle”) mapping each data item independently and uniformly to the range of
the hash function. However, this idealized model is unrealistic, because a truly random function mapping
{0,1}n to {0,1}m requires an exponential (in n) number of bits to describe.

For this reason, a line of theoretical work, starting with the seminal paper of Carter and Wegman [8]
on universal hashing, has sought to provide rigorous bounds on performance when explicit families of
hash functions are used, e. g., ones whose description and computational complexity are polynomial in n
and m. While many beautiful results of this type have been obtained, they are not always as strong as
we would like. In some cases, the types of hash functions analyzed can be implemented very efficiently
(e. g., universal or O(1)-wise independent hash functions), but the performance guarantees are noticeably
weaker than for ideal hashing. (A recent motivating example is the analysis of linear probing under 5-wise
independence [25], discussed more below.) In other cases, the performance guarantees are (essentially)
optimal, but the hash functions are more complex and expensive (e. g., with a super-linear time or space
requirement). For example, if at most T items are going to be hashed, then a T -wise independent hash
function will have precisely the same behavior as an ideal hash function. But a T -wise independent hash
function mapping to {0,1}m requires at least T ·m bits to represent, which is often too large. For some
applications, it has been shown that less independence, such as O(logT )-wise independence, suffices,
e. g., [36, 26], but such functions are still substantially less efficient than 2-universal hash functions. A
series of works [38, 24, 11] have improved the time complexity of (almost) T -wise independence to a
constant number of word operations, but the space complexity necessarily remains at least T ·m.

In practice, however, the performance of standard universal hashing seems to match what is predicted
for ideal hashing. This phenomenon was experimentally observed long ago in the setting of Bloom
filters [31]; other reported examples include [6, 10, 26, 30, 32]. Thus, it does not seem truly necessary to
use the more complex hash functions for which this kind of performance can be proven. We view this as
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a significant gap between the theory and practice of hashing.
In this paper, we aim to bridge this gap. Specifically, we suggest that it is due to the use of worst-case

analysis. Indeed, in some cases, it can be proven that there exist sequences of data items for which
universal hashing does not provide optimal performance. But these bad sequences may be pathological
cases that are unlikely to arise in practice. That is, the strong performance of universal hash functions in
practice may arise from a combination of the randomness of the hash function and the randomness of the
data.

Of course, doing an average-case analysis, whereby each data item is independently and uniformly
distributed in {0,1}n, is also very unrealistic (not to mention that it trivializes many applications). Here
we propose that an intermediate model, previously studied in the literature on randomness extraction [9],
may be an appropriate data model for hashing applications. Under the assumption that the data fits this
model, we show that relatively weak hash functions achieve essentially the same performance as ideal
hash functions.

Our model We model the data as coming from a random source in which the data items can be far from
uniform and have arbitrary correlations, provided that each (new) data item is sufficiently unpredictable
given the previous items. This is formalized by Chor and Goldreich’s notion of a block source [9],1 where
we require that the i-th item (block) Xi has at least some k bits of “entropy” conditioned on the previous
items (blocks) X1, . . . ,Xi−1. There are various choices for the entropy measure that can be used here;
Chor and Goldreich use min-entropy, but most of our results hold even for the less stringent measure of
Rényi entropy.

We believe that a block source is a plausible model for many real-life data sources, provided the
entropy k required per-block is not too large. However, in some settings, the data may have structure that
violates the block-source property, in which case our results will not apply. Indeed, recent experimental
and theoretical results [40, 27] have identified some natural classes of data sets (e. g., where the items are
densely packed in an interval) where existing universal hash families perform poorly (e. g., when used in
linear probing, as described below).

Our work is very much in the same spirit as previous works that have examined intermediate models
between worst-case and average-case analysis of algorithms for other kinds of problems. Examples
include the semi-random graph model of Blum and Spencer [5], and the smoothed analysis of Spielman
and Teng [39]. Interestingly, Blum and Spencer’s semi-random graph models are based on Santha and
Vazirani’s model of semi-random sources [35], which in turn were the precursor to the Chor–Goldreich
model of block sources [9]. Chor and Goldreich suggest using block sources as an input model for
communication complexity, but surprisingly it seems that no one has considered them as an input model
for hashing applications.

Our results Our first observation is that standard results in the literature on randomness extractors
already imply that universal hashing performs nearly as well ideal hashing, provided the data items
have enough entropy [3, 17, 9, 44]. Specifically, if we have T data items coming from a block source

1Chor and Goldreich called these probability-bounded sources, but the term block source has become more common in the
literature.
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(X1, . . . ,XT ) where each data item has Rényi entropy at least m+ 2log(T/ε) and H is a random 2-
universal hash function mapping to {0,1}m, then (H(X1), . . . ,H(XT )) has statistical difference at most
ε from T uniform and independent elements of {0,1}m. Thus, any event that would occur with some
probability p under ideal hashing now occurs with probability p± ε . This allows us to automatically
translate existing results for ideal hashing into results for universal hashing in our model.

In our remaining results, we focus on reducing the amount of entropy required from the data items.
Assuming our hash function has a description size o(mT ), then we must have at least (1−o(1))m bits of
entropy per item for the hashing to “behave like” ideal hashing (because the entropy of (H(X1), . . . ,H(XT ))
is at most the sum of the entropies of H and the Xi’s). The standard analysis mentioned above requires an
additional 2 log(T/ε) bits of entropy per block. In the randomness extraction literature, the additional
entropy required is typically not significant because log(T/ε) is much smaller than m. However, it can be
significant in our applications. For example, a typical setting is hashing T = Θ(M) items into 2m = M
bins. Here m+2log(T/ε) ≥ 3m−O(1) and thus the standard analysis requires 3 times more entropy
than the lower bound of (1−o(1))m. (The bounds obtained for the specific applications mentioned below
are even larger, sometimes due to the need for a subconstant ε = o(1) and sometimes due to the fact that
several independent hash values are needed for each item.)

We use a variety of general techniques to reduce the entropy required. These include switching from
statistical difference (equivalently, `1 distance) to Rényi entropy (equivalently, `2 distance or collision
probability) and/or Hellinger distance (corresponding to `1/2 distance under appropriate normalization)
throughout the analysis and decoupling the probability that a hash function is “good” from the uniformity
of the hashed values h(Xi). In particular, we reduce the required entropy, for (H(X1), . . . ,H(XT )) to be
ε-close to uniform in statistical distance, from m+2log(T/ε) to m+ logT +2log(1/ε), which we show
is tight. We can reduce the entropy required even further for some applications by measuring the quality
of the output differently (not using statistical distance) or by using 4-wise independent hash functions
(which also have very fast implementations [40]).

Applications We illustrate our approach with several specific applications. Here we informally summa-
rize the results; definitions and discussions appear in Sections 3 and 4. In the following discussion, T is
the number of data to be hashed, M is the size of the hash table, and we focus on the typical setting where
T = O(M).

The classic analysis of Knuth [20] gives a tight bound for the insertion time in a hash table with linear
probing in terms of the “load” of the table (the number of items divided by the size of the table), under
the assumption that an idealized, truly random hash function is used. Resolving a longstanding open
problem, Pagh, Pagh, and Ružić [25] recently showed that while pairwise independence does not suffice
to bound the insertion time in terms of the load alone (for worst-case data), such a bound is possible with
5-wise independent hashing. However, their bound for 5-wise independent hash functions is polynomially
larger than the bound for ideal hashing. We show that 2-universal hashing actually achieves the same
asymptotic performance as ideal hashing, provided that the data comes from a block source with roughly
3logM bits of (Rényi) entropy per item, where M is the size of the hash table.

With standard chained hashing, when T items are hashed into T buckets by a single truly random hash
function, the maximum load is known to be (1+o(1)) · (logT/ log logT ) with high probability [15, 28].
In contrast, Alon et al. [1] show that for a natural family of 2-universal hash functions, it is possible for
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Type of Hash Family Required Entropy
Linear Probing

2-universal hashing 3logT
4-wise independence 2logT

Chained Hashing
2-universal hashing 2logT

Balanced Allocations with d Choices
2-universal hashing (d +1) logT

Bloom Filters
2-universal hashing 3logT

Table 1: Each entry denotes the (Rényi) entropy required per item to ensure that the performance of the
given application is “close” to the performance when using truly random hash functions. In all cases,
the bounds omit additive terms that depend on how close a performance is desired, and we restrict to
the (standard) case that the size of the hash table is linear in the number of items being hashed. That is,
m = logT +O(1).

an adversary to choose a set of T items so that the maximum load is always Ω(T 1/2). Our results in turn
show that 2-universal hashing achieves the same performance as ideal hashing asymptotically, provided
that the data comes from a block source with roughly 2logT bits of (Rényi) entropy per item.

With the balanced allocation paradigm [2], it is known that when T items are hashed to T buckets,
with each item being sequentially placed in the least loaded of d choices (e. g., d = 2), the maximum
load is log logT/ logd +O(1) with high probability. We show that the same result holds when the hash
function is chosen from a 2-universal hash family, provided the data items come from a block source with
roughly (d +1) logT bits of entropy per data item.

Bloom filters [4] are data structures for approximately storing sets in which membership tests can
result in false positives with some bounded probability. We begin by showing that there is a constant gap
in the false positive probability for worst-case data when O(1)-wise independent hash functions are used
instead of truly random hash functions. On the other hand, we show that if the data comes from a block
source with roughly 3logM bits of (Rényi) entropy per item, where M is the size of the Bloom filter, then
the false positive probability with 2-universal hashing asymptotically matches that of ideal hashing.

A summary of required (Rényi) entropy per item for the above applications can be found in Table 1.

2 Preliminaries

Notation [N] denotes the set {1, . . . ,N}. All logs are base 2. For a random variable X and an event E,
X |E denotes X conditioned on E. The support of X is supp(X) = {x : Pr[X = x]> 0}. For a real-valued
function f , E[ f (X)] , ∑x Pr[X = x] · f (x) denotes the expectation of f (X), which is also denoted by
Ex←X [ f (x)]. For a finite set S, US denotes a random variable uniformly distributed on S.
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Hashing Let H be a family (multiset) of hash functions h : [N]→ [M] and let H be uniformly distributed
over H. We use h← H to denote that h is sampled according to the distribution H. We say that H
is a truly random family if H is the set all functions mapping [N] to [M], i. e., the N random variables
{H(x)}x∈[N] are independent and uniformly distributed over [M]. For s ∈ N, H is s-wise independent
(a. k. a. strongly s-universal [42]) if for every sequence of distinct elements x1, . . . ,xs ∈ [N], the random
variables H(x1), . . . ,H(xs) are independent and uniformly distributed over [M]. H is s-universal if for
every sequence of distinct elements x1, . . . ,xs ∈ [N], we have Pr[H(x1) = · · · = H(xs)] ≤ 1/Ms. The
description size of H ∈H is the number of bits to describe H, which is simply log |H|. For a hash
family H mapping [N]→ [M] and k ∈ N, we define Hk to be the family mapping [N]→ [M]k consisting
of the functions of the form h(x) = (h1(x), . . . ,hk(x)), where each hi ∈H. Observe that if H is s-wise
independent (resp., s-universal), then so is Hk. However, description size and computation time for
functions in Hk are k times larger than for H.

3 Hashing worst-case data

In this section, we describe the four main hashing applications we study in this paper—linear probing,
chained hashing, balanced allocations, and Bloom filters—and describe mostly known results about what
can be achieved for worst-case data.

3.1 Linear probing

A hash table using linear probing stores a sequence x = (x1, . . . ,xT ) of data items from [N] using M
memory locations. Given a hash function h : [N]→ [M], we place the data items x1, . . . ,xT sequentially as
follows. The data item xi first attempts placement at h(xi), and if this location is already filled, locations
(h(xi)+1) mod M, (h(xi)+2) mod M, and so on are tried until an empty location is found. The ratio
α = T/M is referred to as the load of the table. The efficiency of linear probing is measured by the
insertion time for a new data item. (Other measures, such as the average time to search for items already
in the table, are also often studied, and our results can be generalized to these measures as well.)

Definition 3.1. Given h : [N]→ [M], a set x = {x1, . . . ,xT−1} of data items from [N] stored via linear
probing using h, and an extra data item y /∈ x̄, we define the insertion time TimeLP(h,x,y) to be the value
of j such that y is placed at location h(y)+( j−1) mod M.

It is well known that with ideal hashing (i. e., hashing using truly random hash functions), the expected
insertion time can be bounded quite tightly as a function of the load [20].

Theorem 3.2 ([20]). Let H be a truly random hash function mapping [N] to [M]. For every sequence
x ∈ [N]T−1 and y /∈ x, we have

E[TimeLP(H,x,y)]≤ 1/(1−α)2 ,

where α = T/M is the load.
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Resolving a longstanding open problem, Pagh, Pagh, and Ružić [25] recently showed that the expected
lookup time could be bounded in terms of α using only O(1)-wise independence. Specifically, with
5-wise independence, the expected time for an insertion is O

(
1/(1−α)2.5

)
for any sequence x. On the

other hand, in [25] it is also shown that there are examples of sequences x and pairwise independent
hash families such that the expected time for a lookup is logarithmic in T (even though the load α is
independent of T ). In contrast, our work demonstrates that pairwise independent hash functions yield
expected lookup times that are asymptotically the same as under the idealized analysis, assuming there is
sufficient entropy in the data items themselves.

3.2 Chained hashing

A hash table using chained hashing stores a set x = {x1, . . . ,xT} ∈ [N]T in an array of M buckets. Let h
be a hash function mapping [N] to [M]. We place each item xi in the bucket h(xi). The load of a bucket
when the process terminates is the number of items in it.

Definition 3.3. Given h : [N]→ [M] and a sequence x = {x1, . . . ,xT} of data items from [N] stored via
chained hashing using h, we define the maximum load MaxLoadCH(x,h) to be the maximum load among
the buckets after all data items have been placed.

Gonnet [15] proved that when M = T , the expected maximum load is logT/log logT asymptotically.
This bound also holds with high probability, as noted in [28]. More precisely, we have:

Theorem 3.4 ([15]). Let H be a truly random hash function mapping [N] to [T ]. For every sequence
x ∈ [N]T of distinct data items, we have

E [MaxLoadCH(x,H)] = (1+o(1)) · logT
log logT

and there is a function g(T ) = o(1) such that

Pr
[

MaxLoadCH(x,H)≤ (1+g(T )) · logT
log logT

]
= 1−o(1) ,

where the o(1) terms tend to zero as T → ∞.

The calculation underlying this theorem requires that the hash function be Ω(logT/ log logT )-wise
independent. Indeed, Alon et al. [1] demonstrate that this result does not hold in general for 2-universal
hash functions. For example, they show that when the hash function is chosen from the (2-universal)
family of linear transformations F2→ F for a finite field F whose size T = |F | is a square, it is possible
for an adversary to choose a set of T items so that the maximum load is always at least

√
T .

3.3 Balanced allocations

A hash table using the balanced allocation paradigm [2] with d ∈ N choices stores a sequence x =
(x1, . . . ,xT ) ∈ [N]T in an array of M buckets. Let h be a hash function mapping [N] to [M]d ∼= [Md ], where
we view the components of h(x) as (h1(x), . . . ,hd(x)). We place the items sequentially by putting xi in
the least loaded of the d buckets h1(xi), . . . ,hd(xi) at time i (breaking ties arbitrarily), where the load of a
bucket at time i is the number of items from x1, . . . ,xi−1 placed in it.
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Definition 3.5. Given h : [N]→ [M]d , a sequence x = (x1, . . . ,xT ) of data items from [N] stored via the
balanced allocation paradigm (with d choices) using h, we define the maximum load MaxLoadBA(x,h) to
be the maximum load among the buckets at time T +1.

In the case that the number T of items is the same as the number M of buckets and we do bal-
anced allocation with d = 1 choice (i. e., chained hashing), it is proved [28] that the maximum load is
Θ(logT/ log logT ) with high probability. Remarkably, when the number of choices d is two or larger,
the maximum load drops to be double-logarithmic.

Theorem 3.6 ([2, 41]). For every d ≥ 2 and γ > 0, there is a constant c such the following holds. Let H
be a truly random hash function mapping [N] to [T ]d . For every sequence x ∈ [N]T of distinct data items,
we have

Pr
[

MaxLoadBA(x,H)>
log logT

logd
+ c
]
≤ 1

T γ
.

There are other variations on this scheme, including the asymmetric version due to Vöcking [41] and
cuckoo hashing [26]; we choose to study the original setting for simplicity.

The asymmetric scheme has been recently studied under explicit functions [43], similar to those
of [11]. At this point, we know of no non-trivial upper or lower bounds for the balanced allocation
paradigm using families of hash functions with constant independence, although performance has been
tested empirically [6]. Such bounds have been a long-standing open question in this area.

3.4 Bloom filters

A Bloom filter [4] represents a set x = {x1, . . . ,xT} ⊂ [N] using an array of M bits and ` hash functions.
For our purposes, it will be somewhat easier to work with a segmented Bloom filter, where the M bits
are partitioned into ` disjoint subarrays of size M/`, with one subarray for each hash function. We
assume that M/` is an integer. (This splitting does not substantially change the results from the standard
approach of having all hash functions map into a single array of size M.) As in the previous section,
we denote the components of a hash function h : [N]→ [M/`]` ∼= [(M/`)`], as providing ` hash values
h(x) = (h1(x), . . . ,h`(x)) ∈ [M/`]` in the natural way. The Bloom filter is initialized by setting all bits to
0, and then setting the hi(x j)’th bit to be 1 in the i’th subarray for all i ∈ [`] and j ∈ [T ]. Given a data
item y, one tests for membership in x by accepting if the hi(y)’th bit is 1 in the i’th subarray for all i ∈ [`],
and rejecting otherwise. Clearly, if y ∈ x, then the algorithm will always accept. However, the algorithm
may err if y /∈ x.

Definition 3.7. Given h : [N]→ [M/`]` (where ` divides M), a set x = {x1, . . . ,xT} of data items from
[N] stored in an `-segment Bloom filter using h, and an additional data item y ∈ [N], we define the false
positive predicate FalsePosBF(h,x,y) to be 1 if y 6∈ x and the membership test accepts (i. e., if y /∈ x yet

hi(y) ∈ hi(x)
def
= {hi(x j) : j = 1, . . . ,T}

for all i = 1, . . . , `).

For truly random families of hash functions, it is easy to compute the false positive probability.
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Theorem 3.8 ([4]). Let H be a truly random hash function mapping [N] to [M/`]` (where ` divides M).
For every set x ∈ [N]T of data items and every y /∈ x, we have

Pr[FalsePosBF(H,x,y) = 1] =

(
1−
(

1− `

M

)T
)`

≈
(

1− e−`T/M
)`

.

In the typical case that M = Θ(T ), the asymptotically optimal number of hash functions is ` =
(M/T ) · ln2, and the false positive probability is approximately 2−`.

We now turn to the worst-case performance of Bloom filters under O(1)-wise independence. It is
folklore that 2-universal hash functions can be used with a constant-factor loss in space efficiency. Indeed,
a union bound shows that Pr[hi(y)∈ hi(x)] is at most T ·(`/M), compared to 1−(1−`/M)T in the case of
truly random hash functions. This can be generalized to s-wise independent families using the following
inclusion-exclusion formula.

Lemma 3.9. Let H : [N]→ [M/`] be a hash function chosen at random from a family H (where ` |M).
For every sequence x ∈ [N]T , every y /∈ x, and every even s≤ T , we have

Pr[H(y) ∈ H(x)] =
T

∑
j=1

(−1) j+1
∑

U⊆T,|U |= j
Pr[∀k ∈U : H(y) = H(xk)]

≤
s−1

∑
j=1

(−1) j+1
∑

U⊆T,|U |= j
Pr[∀xk ∈U : H(y) = H(xk)] .

If H is an s-universal hash family, then the first s−1 terms of the outer sum above are the same as for
a truly random function (namely (−1) j+1 ·

(T
j

)
(`/M) j). This gives the following bound.

Proposition 3.10. Let s be an even constant. Let H be an s-universal family mapping [N] to [M/`]
(where ` divides M), and let H = (H1, . . . ,H`) be a random hash function from H`. For every sequence
x ∈ [N]T of T ≤M/` data items and every y /∈ x, we have

Pr[FalsePosBF(H,x,y) = 1]≤

(
1−
(

1− `

M

)T

+

(
`T
M

)s
)`

.

Proof. By Lemma 3.9, for each i = 1, . . . , `, we have:

Pr[Hi(y) ∈ Hi(x)]≤−
s−1

∑
j=1

(−1) j
∑

U⊆T,|U |= j
Pr[Hi(y) = Hi(xk) ∀k ∈U ]

=−
s−1

∑
j=1

(−1) j ·
(

T
j

)(
`

M

) j

(by s-universality)

=−

[(
1− `

M

)T

−1−
T

∑
j=s

(−1) j ·
(

T
j

)(
`

M

) j
]

≤ 1−
(

1− `

M

)T

+

(
`T
M

)s

,
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where the last inequality follows by observing that the sum is alternating and thus bounded by

(
T
s

)
(`/M)2 ≤ (`T/M)s .

Thus,

Pr[FalsePosBF(H,x,y) = 1] = Pr[Hi(y) ∈ Hi(x) ∀i]≤

(
1−
(

1− `

M

)T

+

(
`T
M

)s
)`

.

Notice that in the common case that `= Θ(1) and `T ≤M/2 , so that the false positive probability is
constant, the above bound differs from the one for ideal hashing by an amount that shrinks rapidly with s.
However, when s is constant, the difference remains an additive constant. Another way of interpreting
this is that to obtain a given guarantee on the false positive probability using O(1)-wise independence
instead of ideal hashing, one must pay a constant factor in the space for the Bloom filter. The following
proposition shows that no better bound can be proved based solely on O(1)-wise independence.

Proposition 3.11. Let s be an even constant. For all N,M, `,T ∈ N such that M/` is a prime power and
T < min{M/`,N}, there exists an (s+1)-wise independent family of hash functions H mapping [N] to
[M/`] a sequence x ∈ [N]T of data items, and a y ∈ [N] \ x, such that if H = (H1, . . . ,H`) is a random
hash function from H`, we have

Pr[FalsePosBF(H,x,y) = 1]≥

(
1−
(

1− `

M

)T

+Ω

((
`T
M

)s))`

.

Proof. Let q = M/`, and let F be the finite field of size q. Associate the elements of [M/`] with elements
of F, and similarly for the first M/` elements of [N]. Let H1 consist of all polynomials f : F→ F of degree
at most s; this is an (s+1)-wise independent family. Let H2 consist of any (s+1)-wise independent
family mapping [N] \F to F. For a function f ∈H1 and g ∈H2, define h = f ∪ g : [N]→ [M/`] by
h(x) = f (x) if x ∈ F and h(x) = g(x) if x /∈ F. Let H be the family of all such functions f ∪g. We let x
be an arbitrary sequence of T distinct elements of F, and y any other element of F.

Again we compute the false positive probability using Lemma 3.9. The first s terms can be computed
exactly as before, using (s+1)-wise independence. For the terms beyond s, we observe that when |U | ≥ s,
it is the case that hi(y) = hi(xk) for all k ∈U if and only if hi = f ∪g for a constant polynomial f . The
reason is that no nonconstant polynomial of degree at most s can take on the same value more than s times.
The probability that a random polynomial of degree at most s is a constant polynomial is 1/qs = (`/M)s.
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Pr[Hi(y) ∈ Hi(x)] =
T

∑
j=1

(−1) j+1
∑

U⊆T,|U |= j
Pr[∀k ∈U : Hi(y) = Hi(xk)]

=

[
s−1

∑
j=1

(−1) j+1 ·
(

T
j

)(
`

M

) j
]
+

[
T

∑
j=s

(−1) j+1 ·
(

T
j

)(
`

M

)s
]

=

[
1−
(

1− `

M

)T

+
T

∑
j=s

(−1) j ·
(

T
j

)(
`

M

) j
]
+

[
s−1

∑
j=0

(−1) j ·
(

T
j

)(
`

M

)s
]

≥

[
1−
(

1− `

M

)T

+Ω

(
`T
M

)s
]
−O

(
T s−1 ·

(
`

M

)s)

= 1−
(

1− `

M

)T

+Ω

((
`T
M

)s)
.

Again, to bound the false positive probability, we simply raise the above to the `-th power.

4 Hashing block sources

4.1 Block sources

We view our data items as being random variables distributed over a finite set of size N, which we identify
with [N]. We use the following quantities to measure the amount of randomness in a data item. For a
random variable X , the max probability of X is mp(X) = maxx Pr[X = x]. The collision probability of X
is cp(X) = ∑x Pr[X = x]2. Measuring these quantities is equivalent to measuring the min-entropy

H∞(X) = min
x

log(1/Pr[X = x]) = log(1/mp(X))

and the Rényi entropy
H2(X) = log(1/Pr[X = X ′]) = log(1/cp(X)) ,

where X ′ is an i. i. d. copy of X . If X is supported on a set of size K, then mp(X)≥ cp(X)≥ 1/K (i. e.,
H∞(X) ≤ H2(X) ≤ logK), with equality iff X is uniform on its support. It also holds that mp(X) ≤
cp(X)1/2 (i. e., H∞(X)≥ H2(X)/2), so min-entropy and Rényi entropy are always within a factor of 2 of
each other.

We model a sequence of data items as a sequence (X1, . . . ,XT ) of correlated random variables where
each item is guaranteed to have some entropy even conditioned on the previous items.

Definition 4.1 (Block Sources). A sequence of random variables (X1, . . . ,XT ) taking values in [N]T is a
block source with collision probability p per block (respectively, max probability p per block) if for every
i ∈ [T ] and every (x1, . . . ,xi−1) ∈ supp(X1, . . . ,Xi−1), we have cp(Xi|X1=x1,...,Xi−1=xi−1)≤ p (respectively,
mp(Xi|X1=x1,...,Xi−1=xi−1)≤ p).
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When max probability is used as the measure of entropy, then this is precisely the model of sources
suggested in the randomness extractor literature by Chor and Goldreich [9]. We will mainly use the
collision probability formulation as the entropy measure, since it makes our results more general.

Definition 4.2. (X1, . . . ,XT ) is a black K-source if it is a block source with collision probability p = 1/K
per block.

The following simple fact relates the collision probability of a joint distribution with its marginal.

Lemma 4.3. Let (X ,Y ) be a joint distribution. We have cp(Y )≤ |supp(X)| · cp(X ,Y ).

Proof. It follows by an application of the Cauchy-Schwarz inequality.

|supp(X)| · cp(X ,Y ) = |supp(X)| ·∑
x,y

Pr[X = x∧Y = y]2

=

(
∑

x∈supp(X)

12

)
·

(
∑
y

Pr[Y = y]2 · ∑
x∈supp(X)

Pr[X = x | Y = y]2
)

= ∑
y

Pr[Y = y]2 ·

(
∑

x∈supp(X)

Pr[X = x | Y = y]2
)
·

(
∑

x∈supp(X)

12

)

≥∑
y

Pr[Y = y]2 ·
(

∑
x

Pr[X = x | Y = y]
)2

= cp(Y ) .

Let (X ,Y ) be jointly distributed random variables. We can define the conditional collision probability
of X conditioning on Y as follows.

Definition 4.4. The conditional collision probability of X conditioning on Y is

cp(X | Y ) = E
y←Y

[cp(X |Y=y)] .

The conditional Rényi entropy is H2(X | Y ) = log(1/cp(X | Y )).

We note that in general, the chain rule (i. e., H(X ,Y ) = H(X)+H(Y | X)) does not hold for Rényi
entropy; that is, it is not true in general that cp(X ,Y ) = cp(X) · cp(Y | X). But this fact is true when Y is
uniformly distributed.

Lemma 4.5. Let (X ,Y ) be jointly distributed random variables such that X is uniformly distributed. We
have

cp(X ,Y ) = cp(X) · cp(Y | X) .

Proof. Let (X ′,Y ′) be an i. i. d. copy of (X ,Y ). We have

cp(X ,Y ) = Pr[X = X ′∧Y = Y ′] = Pr[X = X ′] ·Pr[Y = Y ′ | X = X ′] .

The first term is cp(X) by definition. For the second term, note that when X is uniformly distributed, the
distribution of X remains uniform after conditioning on X = X ′. Thus,

Pr[Y = Y ′ | X = X ′] = E
x←X

[Pr[Y = Y ′ | X = X ′ = x]] = E
x←X

[cp(Y |X=x)] = cp(Y | X) .
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On the other hand, the following lemma says that as in the case of Shannon entropy, conditioning can
only decrease the entropy.

Lemma 4.6. Let (X ,Y,Z) be jointly distributed random variables. We have

cp(X)≤ cp(X | Y )≤ cp(X | Y,Z) .

Proof. For the first inequality, we have

cp(X) = ∑
x

Pr[X = x]2

= ∑
y,y′

Pr[Y = y] ·Pr[Y = y′] ·
(

∑
x

Pr[X = x | Y = y] ·Pr[X = x | Y = y′]
)

≤∑
y,y′

Pr[Y = y] ·Pr[Y = y′] ·
(

∑
x

Pr[X = x | Y = y]2
)1/2

·
(

∑
x

Pr[X = x | Y = y′]2
)1/2

= E
y←Y

[
cp(X |Y=y)

1/2
]2

≤ cp(X | Y ) .

For the second inequality, observe that for every y in the support of Y , we have

cp(X |Y=y)≤ cp((X |Y=y) | (Z|Y=y))

from the first inequality. It follows that

cp(X | Y ) = E
y←Y

[cp(X |Y=y)]

≤ E
y←Y

[cp((X |Y=y) | (Z|Y=y))]

= E
y←Y

[ E
z←(Z|Y=y)

[cp(X |Y=y,Z=z)]

= cp(X | Y,Z) .

4.2 Extracting randomness

A randomness extractor [23] can be viewed as a family of hash functions with the property that for any
random variable X with enough entropy, if we pick a random hash function h from the family, then h(X)
is “close” to being uniformly distributed on the range of the hash function. Randomness extractors are a
central object in the theory of pseudorandomness and have many applications in theoretical computer
science. Thus there is a large body of work on the construction of randomness extractors. (See the
surveys [22, 37].) A major emphasis in this line of work is constructing extractors where it takes extremely
few (e. g., a logarithmic number of) random bits to choose a hash function from the family. This parameter
is less crucial for us, so instead our emphasis is on using simple and very efficient hash functions (e. g.,
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universal hash functions) and minimizing the amount of entropy needed from the source X . To do this,
we will measure the quality of a hash family in ways that are tailored to our application, and thus we do
not necessarily work with the standard definitions of extractors.

In requiring that the hashed value h(X) be “close” to uniform, the standard definition of an extractor
uses the most natural measure of “closeness.” Specifically, for random variables X and Y , taking values
in [N], their statistical difference is defined as

∆(X ,Y ) = max
S⊆[N]

∣∣Pr[X ∈ S]−Pr[Y ∈ S]
∣∣ .

X and Y are called ε-close (resp., ε-far) if ∆(X ,Y )≤ ε (resp., ∆(X ,Y )≥ ε).
The classic Leftover Hash Lemma shows that universal hash functions are randomness extractors

with respect to statistical difference.

Lemma 4.7 (The Leftover Hash Lemma [3, 17]). Let H : [N]→ [M] be a random hash function from a
2-universal family H. For every random variable X taking values in [N] with cp(X)≤ 1/K, we have

cp(H(X) | H)≤ 1/M+1/K and cp(H,H(X))≤ (1/|H|) · (1/M+1/K) ,

and thus (H,H(X)) is (1/2) ·
√

M/K-close to (H,U[M]).

Notice that the above lemma says that the joint distribution of (H,H(X)) is ε-close to uniform
(for ε = (1/2) ·

√
M/K); a family of hash functions achieving this property is referred to as a “strong”

randomness extractor. Up to some loss in the parameter ε (which we will later want to save), this strong
extraction property is equivalent to saying that with high probability over h← H, the random variable
h(X) is close to uniform. The above formulation of the Leftover Hash Lemma, passing through collision
probability, is attributed to Rackoff [18].

To prove the lemma, let (H ′,X ′) be an i. i. d. copy of (H,X). We have

cp(H(X) | H) = E
h←H

[cp(h(X))] = Pr[H(X) = H(X ′)]

≤ Pr[X = X ′]+Pr[H(X) = H(X ′) | X 6= X ′]≤ 1
K
+

1
M

.

Also, since H is uniformly distributed, by Lemma 4.5,

cp(H,H(X)) = cp(H) · cp(H(X) | H)≤ 1
|H|
·
(

1
M

+
1
K

)
.

It then relies on the fact that if the collision probability of a random variable is close to that of the
uniform distribution, then the random variable is close to uniform in statistical difference. This fact is
captured (in a more general form) by the following lemma.

Lemma 4.8. If X takes values in [M] and cp(X)≤ 1/M+1/K, then:

(a) For every function f : [M]→ R,

|E[ f (X)]−µ| ≤ σ ·
√

M/K ,
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where µ is the expectation of f (U[M]) and σ is its standard deviation. In particular, if f takes values
in the interval [a,b], then

|E[ f (X)]−µ| ≤
√
(µ−a) · (b−µ) ·

√
M/K .

(b) X is (1/2) ·
√

M/K-close to U[M].

Proof. By the premise of the lemma,

|E[ f (X)]−µ|=

∣∣∣∣∣ ∑
x∈[M]

( f (x)−µ) · (Pr[X = x]−1/M)

∣∣∣∣∣
≤
√

∑
x∈[M]

( f (x)−µ)2 ·
√

∑
x∈[M]

(Pr[X = x]−1/M)2 (Cauchy-Schwarz)

=
√

M ·Var[ f (U[M])] ·
√

∑
x∈[M]

(Pr[X = x]2−2Pr[X = x]/M+1/M2)

=
√

M ·σ ·
√

cp(X)−2/M+1/M

≤ σ ·
√

M/K .

The “in particular” follows from the fact that σ [Y ] ≤
√
(µ−a) · (b−µ) for every random variable Y

taking values in [a,b] and having expectation µ . (Proof: σ [Y ]2 = E[(Y −a)2]− (µ−a)2 ≤ (b−a) · (µ−
a)− (µ−a)2 = (µ−a) · (b−µ).)

Item (b) follows by noting that the statistical difference between X and U[M] is the maximum of
|E[ f (X)]−E[ f (U[M])]| over Boolean functions f , which by Item (a) is at most

√
µ( f ) · (1−µ( f )) ·√

M/K ≤ (1/2) ·
√

M/K.

While the bound on statistical difference given by Lemma 4.8 (b) is simpler to state, Lemma 4.8 (a)
often provides substantially stronger bounds. To see this, suppose there is a bad event S of vanishing
density, i. e., |S| = o(M), and we would like to say that Pr[X ∈ S] = o(1). Using Lemma 4.8 (b), we
would need K = ω(M), i. e., cp(X) = (1+o(1))/M. But applying Lemma 4.8 (a) with f equal to the
characteristic function of S, we get the desired conclusion assuming only K = O(M), i. e., cp(X) =
O(1/M). Variations of Lemma 4.8 (a) can be obtained by using Hölder’s inequality instead of Cauchy-
Schwarz in the proof; these variations provide bounds in terms of Rényi entropy of different orders (and
different moments of f (U[M])).

The classic approach to extracting randomness from block sources is to simply apply a (strong)
randomness extractor, like the one in Lemma 4.7, to each block of the source, and uses a union bound
over blocks. The bound on the distance from the uniform distribution grows linearly with the number of
blocks.

Theorem 4.9 ([9, 44]). Let H : [N]→ [M] be a random hash function from a 2-universal family H.
For for every block source (X1, . . . ,XT ) with collision probability 1/K per block, the random variable
(H,H(X1), . . . ,H(XT )) is (T/2) ·

√
M/K-close to (H,U[M]T ).
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Thus, if we have enough entropy per block, universal hash functions behave just like ideal hash
functions. How much entropy do we need? To achieve an error ε with the above theorem, we need
K ≥MT 2/(4ε2). In the next section, we will explore how to improve the quadratic dependence on ε and
T .

4.3 Optimized block-source extraction

In this section, we present several optimized variants of Theorem 4.9. Working with statistical distance,
we shave a factor of

√
T from Theorem 4.9, which translates to a factor of T saving in the needed K for

the distribution of hashed value to be ε-close to uniform. Recall that a block K-source (X1, . . . ,XT ) is
simply a block source with collision probability 1/K per block.

Theorem 4.10. Let H : [N]→ [M] be a random hash function from a 2-universal family H. For for
every block K-source (X1, . . . ,XT ), the random variable (H,H(X1), . . . ,H(XT )) is

√
MT/K-close to

(H,U[M]T ).

Recall that Theorem 4.9 is proven by passing to statistical distance first, and then measuring the
growth of distance using statistical distance, which incurs a linear loss in the number of blocks T . As
the linear loss in statistical distance is tight in the worst case, we instead measure the growth of distance
using Hellinger distance (cf. [14]), and only pass to statistical distance in the end.

In addition to working with the stringent notion of statistical distance, it turns out that for several
applications, it suffices to ensure that the hashed value (H(X1), . . . ,H(XT )) has (or is statistically close
to having) sufficiently small collision probability, say, within an O(1) factor of that of the uniform
distribution. We prove theorems of this form with smaller required entropy from the block source, where
Theorem 4.11 uses only 2-universal hash functions and Theorem 4.12 achieves better bounds using 4-wise
independent hash functions.

Theorem 4.11. Let H : [N]→ [M] be a random hash function from a 2-universal family H. For every
block K-source (X1, . . . ,XT ) and every ε > 0, the random variable (H,Y ) = (H,H(X1), . . . ,H(XT )) is
ε-close to a distribution (H,Z) with collision probability

cp(H,Z)≤ 1
|H| ·MT

(
1+

M
Kε

)T

.

In particular, if K ≥MT/ε , then (H,Z) has collision probability at most (1+2MT/(εK))/(|H| ·MT ).

Theorem 4.12. Let H : [N]→ [M] be a random hash function from a 4-wise independent family H. For
every block K-source (X1, . . . ,XT ) and every ε > 0, the random variable (H,Y ) = (H,H(X1), . . . ,H(XT ))
is ε-close to a distribution (H,Z) with collision probability

cp(H,Z)≤ 1
|H| ·MT

(
1+

M
K

+

√
2M
K2ε

)T

.

In particular, if K ≥MT +
√

2MT 2/ε , then (H,Z) has collision probability at most (1+ γ)/(|H| ·MT ),
for γ = 2 · (MT +

√
2MT 2/ε)/K.
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Note that by Lemma 4.3, the conclusions of Theorems 4.11 and 4.12 imply that the collision
probability cp(Z) is at most (1+ 2MT/(εK))/MT and (1+ γ)/MT , for γ = 2 · (MT +

√
2MT 2/ε)/K,

respectively.
We shall prove the above three theorems in the following subsections. As the proof of Theorem 4.10

is more involved, we prove Theorems 4.11 and 4.12 first in Sections 4.3.1 and 4.3.2, and then prove
Theorem 4.10 in Section 4.3.3. We further provide several lower bounds in Section 4.4 showing that the
above theorems are optimal in several aspects.

4.3.1 Small collision probability using 2-universal hash functions

Let H : [N]→ [M] be a random hash function from a 2-universal family H. We first study the conditions
under which (H,Y ) = (H,H(X1), . . . ,H(XT )) is ε-close to having collision probability O(1/(|H| ·MT )).
This requirement is less stringent than (H,Y ) being ε-close to uniform in statistical distance, and so
requires less bits of entropy.

The starting point of our analysis is the Leftover Hash Lemma stated in Lemma 4.7 above, which
asserts that if cp(X)≤ 1/K, then cp(H(X) |H)≤ 1/M+1/K. Using the Leftover Hash Lemma, we show
that for every hashed block Yi, the conditional collision probability cp(Yi | H,Y<i) is at most 1/M+1/K.

Lemma 4.13. Let H : [N]→ [M] be a random hash function from a 2-universal family H. Let X =
(X1, . . . ,XT ) be a block K-source over [N]T . Let (H,Y ) = (H,H(X1), . . . ,H(XT )). Then cp(H) = 1/|H|
and for every i ∈ [T ], cp(Yi | H,Y<i)≤ 1/M+1/K.

Proof. cp(H) = 1/|H| is trivial since H is uniformly chosen from H. Fix i ∈ [T ]. By the definition of
block K-source, for every x<i in the support of X<i, cp(Xi|X<i=x<i)≤ 1/K. By the Leftover Hash Lemma,
we have

cp
(
(Yi|X<i=x<i)|(H|X<i=x<i)

)
≤ 1/M+1/K

for every x<i. It follows that cp(Yi |H,X<i)≤ 1/M+1/K. Now, noting that the value of Y<i is determined
by that of H,X<i, we can think of (Yi | H,X<i) as Yi first conditioning on (H,Y<i), and then further
conditioning on X<i. By Lemma 4.6, we have

cp(Yi | H,Y<i)≤ cp(Yi | H,Y<i,X<i) = cp(Yi | H,X<i)≤ 1/M+1/K ,

as desired.

Lemma 4.13 implies that (1/T ) ·∑i cp(Yi | H,Y<i)≤ 1/M+1/K, which by definition can be rewrite
as

E
(h,y)←(H,Y )

[
1
T

T

∑
i=1

cp(Yi|(H,Y<i)=(h,y<i))

]
≤ 1

M
+

1
K
.

Noting that the collision probability is at least 1/M, Markov’s inequality implies that with probability at
least 1− ε over (h,y)← (H,Y ),

1
T

T

∑
i=1

cp(Yi|(H,Y<i)=(h,y<i))≤
1
M

+
1

Kε
=

1
M
·
(

1+
M
Kε

)
. (4.1)

We proceed in the following two steps to finish the proof of Theorem 4.11.
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1. First, we show how to fix the ε-fraction of bad (h,y)’s. Namely, we modify at most ε-fraction
of the distribution (H,Y ) to obtain a distribution (H,Z) = (H,Z1, . . . ,ZT ) such that for every
(h,z)← (H,Z),

1
T

T

∑
i=1

cp(Zi|(H,Z<i)=(h,z<i))≤
1
M
·
(

1+
M
Kε

)
.

2. Then we show that the above condition is sufficient to imply that

cp(H,Z)≤ (1/|H| ·MT ) · (1+(M/Kε))T .

We use Lemmas 4.14 and 4.15 below to formalize the above two steps.

Lemma 4.14. Let (H,Y ) = (H,Y1, . . . ,YT ) be jointly distributed random variables over H× [M]T such
that with probability at least 1− ε over (h,y)← (H,Y ), the average conditional collision probability
satisfies

1
T
·

T

∑
i=1

cp(Yi|(H,Y<i)=(h,y<i))≤
1
M

+α .

Then there exists a distribution (H,Z) = (H,Z1, . . . ,ZT ) such that (H,Z) is ε-close to (H,Y ), and for
every (h,z) ∈ supp(H,Z), we have

1
T
·

T

∑
i=1

cp(Zi|(H,Z<i)=(h,z<i))≤
1
M

+α .

Furthermore, the marginal distribution of H is unchanged.

Proof. We define the distribution (H,Z) as follows.

• Sample (h,y)← (H,Y ).

• If (1/T ) ·∑T
i=1 cp(Yi|(H,Y<i)=(h,y<i))≤ 1/M+α , then output (h,y).

• Otherwise, let j ∈ [T ] be the least index such that

1
T

j

∑
i=1

(
cp(Yi|(H,Y<i)=(h,y<i))−

1
M

)
≤ α and

1
T

j+1

∑
i=1

(
cp(Yi|(H,Y<i)=(h,y<i))−

1
M

)
> α .

• Choose w j+1, . . . ,wT ←U[M], and output (h,y1, . . . ,y j,w j+1, . . . ,wT ).

It is easy to check that (i) (H,Z) is well-defined, (ii) (H,Y ) is ε-close to (H,Z), (iii) for every (h,z) ∈
(H,Z),

1
T
·

T

∑
i=1

cp(Zi|(H,Z<i)=(h,z<i))≤
1
M

+α ,

and (iv) the marginal distribution of H is unchanged.
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Lemma 4.15. Let X = (X1, . . . ,XT ) be a sequence of random variables such that for every x ∈ supp(X),

1
T

T

∑
i=1

cp(Xi|X<i=x<i)≤ α .

Then the overall collision probability satisfies cp(X)≤ αT .

Proof. By the Arithmetic Mean-Geometric Mean inequality, the inequality in the premise implies

T

∏
i=1

cp(Xi|X<i=x<i)≤ α
T .

Therefore, it suffices to prove

cp(X)≤ max
x∈supp(X)

T

∏
i=1

cp(Xi|X<i=x<i) .

We prove the inequality by induction on T . The base case T = 1 is trivial. Suppose the inequality is true
for T −1. We have

cp(X) = ∑
x1

Pr[X1 = x1]
2 · cp(X2, . . . ,XT |X1=x1)

≤

(
∑
x1

Pr[X1 = x1]
2

)
·max

x1
cp(X2, . . . ,XT |X1=x1)

≤ cp(X1) ·max
x1

(
max

x2,...,xT

T

∏
i=2

cp(Xi|X<i=x<i)

)

= max
x

T

∏
i=1

cp(Xi|X<i=x<i) ,

as desired.

We now finish the proof of Theorem 4.11. By Lemma 4.14, (H,Y )is ε-close to a distribution
(H,Z) = (H,Z1, . . . ,ZT ) such that for every (h,z)← (H,Z),

1
T

T

∑
i=1

cp(Zi|(H,Z<i)=(h,z<i))≤
1
M
·
(

1+
M
Kε

)
.

Applying Lemma 4.15 on (Z|H=h) for every h ∈ supp(H), we have

cp(H,Z) =
1
|H|
· E

h←H

[
cp(Z|H=h)

]
≤ 1
|H| ·MT ·

(
1+

M
Kε

)T

.
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4.3.2 Small collision probability using 4-wise independent hash functions

Here we improve the bound in the previous section using 4-wise independent hash functions. The
improvement comes from the fact that when we use 4-wise independent hash functions, we have a
concentration result on the conditional collision probability for each block, via the following lemma.

Lemma 4.16. Let H : [N]→ [M] be a random hash function from a 4-wise independent family H, and X
a random variable over [N] with cp(X)≤ 1/K. Then we have

Var
h←H

[cp(h(X))]≤ 2
MK2 .

Proof. Let f (h) = cp(h(X)). We compute the variance Var[ f (H)] = E[ f (H)2]−E[ f (H)]2. Let X ′,Y,Y ′

be i. i. d. copies of X . We first recall

E[ f (H)] = Pr[H(X) = H(X ′)]

= Pr[X = X ′]+Pr[X 6= X ′] ·Pr[H(X) = H(X ′) | X 6= X ′]

= cp(X)+(1− cp(X)) · 1
M

,

and note that

E[ f (H)2] = E
h←H

[Pr[h(X) = h(X ′)]2] = Pr[H(X) = H(X ′)∧H(Y ) = H(Y ′)] .

The lemma then follows by the following calculation.

Pr[H(X) = H(X ′)∧H(Y ) = H(Y ′)]

≤ Pr[X = X ′∧Y = Y ′]

+Pr[(X = X ′∧Y 6= Y ′)∨ (X 6= X ′∧Y = Y ′)]

·Pr[H(X) = H(X ′)∧H(Y ) = H(Y ′) | (X = X ′∧Y 6= Y ′)∨ (X 6= X ′∧Y = Y ′)]

+Pr[X 6= X ′∧Y 6= Y ′∧{X ,X ′} 6= {Y,Y ′}]
·Pr[H(X) = H(X ′)∧H(Y ) = H(Y ′) | X 6= X ′∧Y 6= Y ′∧{X ,X ′} 6= {Y,Y ′}]

+Pr[{X ,X ′}= {Y,Y ′}∧X 6= X ′]

·Pr[H(X) = H(X ′)∧H(Y ) = H(Y ′) | {X ,X ′}= {Y,Y ′}∧X 6= X ′]

≤ cp(X)2 +2cp(X)(1− cp(X)) · 1
M

+(1− cp(X))2 · 1
M2 +2cp(X)2 · 1

M

≤ E[ f (H)]2 +
2cp(X)2

M
.

Thus, Var[ f (H)]≤ 2/(MK2).

We can then replace the application of Markov’s inequality in the proof of Theorem 4.11 by Cheby-
chev’s inequality to get a stronger result. Formally, we prove the following lemma, which suffices to
prove Theorem 4.12.
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Lemma 4.17. Let H : [N]→ [M] be a random hash function from a 4-wise independent family H.
Let X = (X1, . . . ,XT ) be a block K-source over [N]T . Let (H,Y ) = (H,H(X1), . . . ,H(XT )). Then with
probability at least 1− ε over (h,y)← (H,Y ),

1
T

T

∑
i=1

cp(Yi|(H,Y<i)=(h,y<i))≤
1
M
·

(
1+

M
K

+

√
2M
K2ε

)
.

Theorem 4.12 follows immediately by composing Lemmas 4.17, 4.14, and 4.15 in the same way as
the proof of Theorem 4.11.

Proof of Lemma 4.17. Recall that we have

E
(h,y)←(H,Y )

[
1
T

T

∑
i=1

cp(Yi|(H,Y<i)=(h,y<i))

]
≤ 1

M
+

1
K
.

Hence, our goal is to upper bound the probability of the value

1
T

T

∑
i=1

cp(Yi|(H,Y<i)=(h,y<i))

deviating from its mean by
√

2/MK2ε . Our strategy is to bound the variance of a properly defined
random variable, and then apply Chebychev’s inequality. By Lemma 4.16, for every i ∈ [T ], we have

Var
h←H

[
cp(Yi|(H,X<i)=(h,x<i))

]
≤ 2

MK2 , ∀x<i ∈ supp(X<i) . (4.2)

Fix i ∈ [T ], let us try to bound the variance of the i-th block. There are two issues to take care of.
First, the variance we have is conditioning on X<i instead of Y<i. Second, even when conditioning on X<i,
it is possible that the variance is too large:

Var
(h,x)←(H,X)

[
cp(Yi|(H,X<i)=(h,x<i))

]
= Ω

(
1

K2

)
� 2

MK2 .

The reason is that conditioning on different X<i = x<i, the collision probability of (Yi|X<i=x<i) may have
different expectations over h←H. Thus, we have to subtract the mean first. Let us define

f (h,x<i) = cp(Yi|(H,X<i)=(h,x<i))− E
h←H

[
cp(Yi|(H,X<i)=(h,x<i))

]
.

Now, for every x<i ∈ supp(X<i), f (H,x<i) has mean 0, and variance ≤ 2/MK2. It follows that

Var
(h,x)←(H,X)

[ f (h,x<i)]≤
2

MK2 .

We now deal with the issue of conditioning on X<i versus Y<i. Let us define

g(h,y<i) = E
x<i←(X<i|(H,Y<i)=(h,y<i))

[ f (h,x<i)] .
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We claim that
cp(Yi|(H,Y<i)=(h,y<i))≤

1
M

+
1
K
+g(h,y<i) .

Indeed, by Lemma 4.6 and the definition of f and g,

cp(Yi|(H,Y<i)=(h,y<i))≤ cp
(
(Yi|(H,Y<i)=(h,y<i)) | (Xi|(H,Y<i)=(h,y<i))

)
= E

x<i←(X<i|(H,Y<i)=(h,y<i))

[
cp(Yi|(H,X<i)=(h,x<i))

]
= E

x<i←(X<i|(H,Y<i)=(h,y<i))

[
f (h,x<i)+ E

h←H

[
cp(Yi|(H,X<i)=(h,x<i))

]]
≤ g(h,y<i)+

1
M

+
1
K
.

Also note that g(H,Y<i) has mean 0 and small variance:

E
(h,y<i)←(H,y<i)

[g(h,y<i)] = E
(h,x)←(H,X)

[ f (h,x<i)] = 0 ,

Var
(h,y<i)←(H,y<i)

[g(h,y<i)]≤ Var
(h,x)←(H,X)

[ f (h,x<i)]≤
2

MK2 .

The above argument holds for every block i ∈ [T ]. Taking average over blocks, we get

E
(h,y)←(H,Y )

[
1
T

T

∑
i=1

g(h,y<i)

]
= 0 ,

Var
(h,y)←(H,Y )

[
1
T

T

∑
i=1

g(h,y<i)

]
≤ 2

MK2 ,

and

1
T

T

∑
i=1

cp(Yi|(H,Y<i)=(h,y<i))≤
1
M

+
1
K
+

(
1
T

T

∑
i=1

g(h,y<i)

)
.

Finally, we can apply Chebychev’s inequality to random variable (1/T ) ·∑i g(H,Y<i) to get the desired
result: with probability 1− ε over (h,y)← (H,Y ),

1
T

T

∑
i=1

cp(Yi|(H,Y<i)=(h,y<i))≤
1
M
·

(
1+

M
K

+

√
2M
K2ε

)
.

4.3.3 Statistical distance to uniform distribution

Let H : [N]→ [M] be a random hash function form a 2-universal family H. Let X = (X1, . . . ,XT ) be a
block K-source over [N]T . In this subsection, we study the statistical distance between the distribution of
hashed sequence (H,Y ) = (H,H(X1), . . . ,H(XT )) and the uniform distribution (H,U[M]T ).
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As mentioned, the classic result in Theorem 4.9 showed that (H,Y ) is (T/2) ·
√

M/K-close to
(H,U[M]T ). The result was proven by passing to statistical distance first, and then measuring the growth of
statistical distance using a hybrid argument, which incurs a linear loss in the number of blocks T . Since
without further information, the hybrid argument is tight, to avoid linear loss in T , we have to measure
the increase of distance over blocks in another way, and pass to statistical distance only in the end. It
turns out that the Hellinger distance (cf. [14]) is a good measure for our purposes:

Definition 4.18 (Hellinger distance). Let X and Y be two random variables over [M]. The Hellinger
distance between X and Y is

d(X ,Y ) def
=

(
1
2 ∑

i
(
√

Pr[X = i]−
√

Pr[Y = i])

)1/2

=
√

1−∑
i

√
Pr[X = i] ·Pr[Y = i] .

Like statistical distance, Hellinger distance is a distance measure for distributions, and it takes value
in [0,1]. The following standard lemma says that the two distance measures are closely related. We
remark that the lemma is tight in both directions even if Y is the uniform distribution.

Lemma 4.19 (cf. [14]). Let X and Y be two random variables over [M]. We have

d(X ,Y )2 ≤ ∆(X ,Y )≤
√

2 ·d(X ,Y ) .

In particular, the lemma allows us to upper-bound the statistical distance by upper-bounding the
Hellinger distance. Since our goal is to bound the distance to uniform, it is convenient to work with the
following definition.

Definition 4.20 (Bhattacharyya Coefficient to Uniform). Let X be a random variable over [M]. The
Bhattacharyya coefficient of X to uniform U[M] is

C(X)
def
=

1
M ∑

i

√
M ·Pr[X = i] = 1−d(X ,U[M])

2 .

(In general, the Bhattacharyya coefficient of random variables X and Y is defined to be 1−d(X ,Y )2.)

Note that C(X ,Y ) = C(X) ·C(Y ) when X and Y are independent random variables, so the Bhat-
tacharyya coefficient is well-behaved with respect to products (unlike statistical distance). By Lemma 4.19,
if the Bhattacharyya coefficient C(X) is close to 1, then X is close to uniform in statistical distance. Recall
that collision probability behaves similarly. If the collision probability cp(X) is close to 1/M, then X is
close to uniform. In fact, by the following normalization, we can view the collision probability as the
2-norm of X , and the Bhattacharyya coefficient as the 1/2-norm of X .

Let f (i) = M ·Pr[X = i] for i ∈ [M]. In terms of f (·), the collision probability is cp(X) = (1/M2) ·
∑i f (i)2, and Lemma 4.8 says that if the “2-norm” M ·cp(X) = Ei[ f (i)2]≤ 1+ε where the expectation is
over uniform i ∈ [M], then ∆(X ,U)≤

√
ε . Similarly, Lemma 4.19 says that if the “1/2-norm” C(X) =

Ei[
√

f (i)]≥ 1− ε , then ∆(X ,U)≤
√

ε .
We now discuss our approach to prove Theorem 4.10. We want to show that (H,Y ) is close to uniform.

All we know is that the conditional collision probability cp(Yi |H,Y<i) is close to 1/M for every block. If
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all blocks are independent, then the overall collision probability cp(H,Y ) is small, and so (H,Y ) is close
to uniform. However, this is not true without independence, since 2-norm tends to over-weight heavy
elements. In contrast, the 1/2-norm does not suffer this problem. Therefore, our approach is to show that
small conditional collision probability implies large Bhattacharyya coefficient. Formally, we have the
following lemma.

Lemma 4.21. Let X = (X1, . . . ,XT ) be jointly distributed random variables over [M1]×·· ·× [MT ] such
that cp(Xi | X<i)≤ αi/Mi for every i ∈ [T ]. Then the Bhattacharyya coefficient satisfies

C(X)≥
√

1
α1 . . .αT

.

With this lemma, the proof of Theorem 4.10 is immediate.

Proof of Theorem 4.10. By Lemma 4.13, cp(H) = 1/|H|, and cp(Yi | H,Y<i)≤ (1+M/K)/M for every
i∈ [T ]. By Lemma 4.21, the Bhattacharyya coefficient satisfies C(H,Y )≥ (1+M/K)−T/2 ≥ 1−MT/2K
(recall that K ≥MT/ε2). It follows by Lemma 4.19 that

∆((H,Y ),(H,U[M]T ))≤
√

2 ·d((H,Y ),(H,U[M]T )) =
√

2 ·
√

1−C(H,Y )≤
√

MT/K ≤ ε .

We proceed to prove Lemma 4.21. The main idea is to use Hölder’s inequality to relate two different
norms. We recall Hölder’s inequality.

Lemma 4.22 (Hölder’s inequality [13]).

• Let F,G be two non-negative functions from [M] to R, and p,q > 0 satisfying 1/p+1/q = 1. Let x
be a uniformly random index over [M]. We have

E
x
[F(x) ·G(x)]≤ E

x
[F(x)p]1/p ·E

x
[G(x)q]1/q .

• In general, let F1, . . . ,Fn be non-negative functions from [M] to R, and p1, . . . pn > 0 satisfying
1/p1 + . . .1/pn = 1. We have

E
x
[F1(x) · · ·Fn(x)]≤ E

x
[F1(x)p1 ]1/p1 · · ·E

x
[Fn(x)pn ]1/pn .

Towards proving Lemma 4.21, we first prove the following lemma that relates the collision probability
and the Bhattacharyya coefficient of a random variable, which may be of independent interest. The lemma
is in fact a special case of Lemma 4.21 with T = 1.

Lemma 4.23. Let X be a random variable over [M] with cp(X) ≤ α/M. Then the Bhattacharyya
coefficient of X satisfies C(X)≥

√
1/α. That is, the Hellinger distance satisfies

d(X ,U[M])≤
√

1− (1/(M · cp(X)))1/2 .
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Proof. We use Hölder’s inequality to relate the two notions. To do so, we express them using the
normalization we mentioned before. Let f (x) = M ·Pr[X = x] for every x ∈ [M]. In terms of f (·), we
want to show that Ex[ f (x)2] ≤ α implies Ex[

√
f (x)] ≥

√
1/α . Note that Ex[ f (x)] = 1. We now apply

Hölder’s inequality with F = f 2/3, G = f 1/3, p = 3, and q = 3/2. We have

E
x
[ f (x)]≤ E

x
[ f (x)2]1/3 ·E

x
[ f (x)1/2]2/3 ,

which implies
C(X) = E

x
[
√

f (x)]≥ E
x
[ f (x)]3/2/E

x
[ f (x)2]1/2 ≥

√
1/α .

Proof of Lemma 4.21. We prove it by induction on T . The base case T = 1 is exactly Lemma 4.23 above.
Suppose the lemma is true for T −1, we show that it is true for T . To apply the induction hypothesis, we
consider the conditional random variables (X2, . . . ,XT |X1=x) for every x ∈ [M1]. For every x ∈ [M1] and
j = 2, . . . ,T , we define

g j(x) = M j · cp((X j|X1=x) | (X2, . . . ,X j−1|X1=x))

to be the “normalized” conditional collision probability. By the induction hypothesis, we have

C(X2, . . . ,XT |X1=x)≥
√

1/g2(x) · · ·gT (x)

for every x ∈ [M1]. Now, let f (x) = M1 ·Pr[X1 = x], and note that by definition,

C(X) = E
x←X1

[√
f (x) ·C(X2, . . . ,XT |X1=x)

]
.

It follows that

C(X) = E
x←X1

[√
f (x) ·C(X2, . . . ,XT |X1=x)

]
≥ E

x←X1

[√
f (x)/g2(x) · · ·gT (x)

]
.

We use Hölder’s inequality twice to show that

E
x

[√
f (x)/g2(x) · · ·gT (x)

]
≥
√

1/α1 · · ·αT .

Let us first summarize the constraints we have. By definition, we have Ex[ f (x)2]≤ α1. Fix j ∈ {2, . . . ,T}.
Note that

cp(X j | X< j) = E
x←X1

[
cp((X j|X1=x) | (X2, . . . ,X j−1|X1=x))

]
= E

x←X1

[g j(x)/M j] = E
x←U[M1 ]

[ f (x)g j(x)]/M j .

It follows that Ex[ f (x)g j(x)] ≤ α j for j = 2, . . . ,T . Now, we apply the second version of Hölder’s
inequality with F1 = ( f/g2 · · ·gT )

1/2, Fj = ( f g j)
1/(T+1) for j = 2, . . . ,T , p1 = 2/(T + 1), and p j =

1/(T +1) for j = 2, . . . ,T , which gives

E
x

[
f (x)T/(T+1)

]
≤ E

x

[√
f (x)/g2(x) · · ·gT (x)

]2/(T+1)
·E

x
[ f (x)g2(x)]

1/(T+1) · · ·E
x
[ f (x)gT (x)]

1/(T+1) ,
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so

E
x

[√
f (x)/g2(x) · · ·gT (x)

]
≥ E

x

[
f (x)T/(T+1)

](T+1)/2
·

T

∏
j=2

E
x
[ f (x)g j(x)]

−1/2

≥ E
x

[
f (x)T/(T+1)

](T+1)/2
·
√

1/α2 · · ·αT .

It remains to lower bound the first term by
√

1/α1. We apply Hölder again with F = f 2/(T+2), G =
f T/(T+2), p = T +2, and q = (T +2)/(T +1), which gives

E
x
[ f (x)]≤ E

x

[
f (x)2]1/(T+2) ·E

x

[
f (x)T/(T+1)

](T+1)/(T+2)
,

so

E
x

[
f (x)T/(T+1)

](T+1)/2
≥ E

x
[ f (x)](T+2)/2 /E

x

[
f (x)2]1/2 ≥

√
1/α1 .

Combining the inequalities, we have C(X)≥
√

1/α1 · · ·αT .

4.4 Lower bounds

In this section, we provide lower bounds on the entropy needed for the data items. We show that if K
is not large enough, then for every hash family H, there exists a block K-source X = (X1, . . . ,XT ) such
that the hashed sequence Y = (H(X1), . . . ,H(XT )) does not satisfy the desired closeness requirements to
uniform (possibly in conjunction with the hash function H).

4.4.1 Lower bound for statistical distance to uniform distribution

Let us first consider the requirement for the joint distribution of (H,Y ) being ε-close to uniform. When
there is only one block, this is exactly the requirement for a “strong extractor.” The lower bound in
the extractor literature, due to Radhakrishnan and Ta-Shma [29] shows that K ≥Ω(M/ε2) is necessary,
which is tight up to a constant factor. Our goal is to show that when hashing T blocks, the value of K
required for each block increases by a factor of T . Intuitively, each block will produce some error (i. e.,
the hashed value is not close to uniform), and the overall error will accumulate over the blocks, so we
need to inject more randomness per block to reduce the error. Indeed, we use this intuition to show that
K ≥Ω(MT/ε2) is necessary for the hashed sequence to be ε-close to uniform, matching the upper bound
in Theorem 4.10. Note that the lower bound holds even for a truly random hash family. Formally, we
prove the following theorem.

Theorem 4.24. Let N,M, and T be positive integers and ε ∈ (0,ε0) a real number such that N ≥MT/ε2,
where ε0 > 0 is a small absolute constant. Let H : [N]→ [M] be a random hash function from an hash
family H. Then there exists an integer K = Ω(MT/ε2), and a block K-source X = (X1, . . . ,XT ) such that
(H,Y ) = (H,H(X1), . . . ,H(XT )) is ε-far from uniform (H,U[M]T ) in statistical distance.
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To prove the theorem, we need to find such an X for every hash family H. Following the intuition,
we find an X that incurs a certain error on a single block, and take X = (X1, . . . ,XT ) to be T i. i. d. copies
of X . More precisely, we first find a K-source X such that for Ω(1)-fraction of hash functions h ∈H,
h(X) is Ω(ε/

√
T )-far from uniform. This step is the same as the lower bound proof for extractors [29],

which uses the probabilistic method. We pick X to be a random flat K-source, i. e., a uniform distribution
over a random set of size K, and show that X satisfies the desired property with nonzero probability.
The next step is to measure how the error accumulates over independent blocks. Note that for a fixed
hash function h, the hashed sequence (h(X1), . . . ,h(XT )) consists of T i. i. d. copies of h(X). Reyzin [33]
has shown that the statistical distance increases by a factor of

√
T when we have T independent copies

for small T . However, Reyzin’s result only shows an increase up to distance O(δ 1/3), where δ is the
statistical distance of the original random variables. We improve Reyzin’s result to show that the Ω(

√
T )

growth continues until the distance reaches some absolute constant. We then use it to show that the joint
distribution (H,Y ) is far from uniform.

The following lemma corresponds to the first step.

Lemma 4.25. Let N and M be positive integers and ε ∈ (0,1/4),δ ∈ (0,1) real numbers such that
N ≥M/ε2. Let H : [N]→ [M] be a random hash function from an hash family H. Then there exists an
integer K = Ω(δ 2M/ε2), and a flat K-source X over [N], such that with probability at least 1−δ over
h← H, h(X) is ε-far from uniform.

Proof. Let K = bmin{α ·M/ε2,N/2}c for some α to be determined later. Let X be a random flat K-
source over [N]. That is, X =US where S ⊂ [N] is a uniformly random size K subset of [N]. We claim
that for every hash function h : [N]→ [M],

Pr
S
[ h(US) is ε-far from uniform ]≥ 1− c ·

√
α (4.3)

for some absolute constant c. Let us assume (4.3), and prove the lemma first. Since the claim holds for
every hash function h,

Pr
h←H,S

[ h(US) is ε-far from uniform ]≥ 1− c ·
√

α .

Thus, there exists a flat K-source US such that

Pr
h←H

[ h(US) is ε-far from uniform ]≥ 1− c ·
√

α .

The lemma follows by setting α = min{δ 2/c2,1/32}. We proceed to prove (4.3). It suffices to show that
for every y ∈ [M], with probability at least 1− c′ ·

√
α over random US, the deviation of Pr[h(US) = y]

from 1/M is at least 4ε/M, where c′ is another absolute constant. That is,

Pr
S

[∣∣∣∣Pr[h(US) = y]− 1
M

∣∣∣∣≥ 4ε

M

]
≥ 1− c′ ·

√
α . (4.4)

Again, let us see why (4.4) is sufficient to prove (4.3) first. Let us call y ∈ [M] is bad for S if∣∣∣∣Pr[h(US) = y]− 1
M

∣∣∣∣≥ 4ε

M
.
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Since inequality (4.4) holds for every y ∈ [M], we have

Pr
S,y
[y is bad for S]≥ 1− c′ ·

√
α ,

where y is uniformly random over [M]. It follows that

Pr
S
[at least 1/2-fraction of y are bad for S]≥ 1−2c′ ·

√
α .

Observe that if at least 1/2-fraction of y are bad for S, then ∆(h(X),U[M])≥ ε . Inequality (4.3) follows
by setting c = 2c′.

It remains to prove (4.4). Let T = h−1(y). We have PrS[h(US) = y] = |S∩T |/|S|. Thus, recall that
K ≤ αM/ε2, (4.4) follows from inequality

Pr
S

[∣∣∣∣|S∩T |− K
M

∣∣∣∣< 4Kε

M

]
≤ c′ ·

√
Kε2

M
,

which follows by the claim below by setting L = K/M, and β = 4ε
√

K/M. (Working out the parameters,
we have c′ = 4c′′, ε < 1/4 implies β <

√
L, and α ≤ 1/32 implies β < 1.)

Claim 4.26. Let N,K > 1 be positive integers such that N > 2K, and L ∈ [0,K/2], β ∈ (0,min{1,
√

L})
real numbers. Let S⊂ [N] be a random subset of size K, and T ⊂ [N] be a fixed subset of arbitrary size.
We have

Pr
S

[
||S∩T |−L| ≤ β

√
L
]
≤ c′′ ·β ,

for some absolute constant c′′.

Intuitively, the probability in the claim is maximized when the set T has size NL/K so that L =

ES[|S∩T |], and the claim follows by observing that in this case, the distribution has deviation Θ(
√

L),
and each possible outcome has probability O(

√
1/L). The formal proof of the claim is in Appendix A

and is proved by expressing the probability in terms of binomial coefficients, and estimating them using
Stirling formula.

The next step is to measure the increase of statistical distance over independent random variables.

Lemma 4.27. Let X and Y be random variables over [M] such that ∆(X ,Y )≥ ε . Let X = (X1, . . . ,XT )
be T i. i. d. copies of X, and let Y = (Y1, . . . ,YT ) be T i. i. d. copies of Y . We have

∆(X ,Y )≥min{ε0,c
√

T · ε} ,

where ε0,c are absolute constants.

Proof. We prove the lemma by the following two claims. The first claim reduces the lemma to the special
case that X is a Bernoulli random variable with bias Ω(ε), and Y is a uniform coin. The second claim
proves the special case.

For our first claim, we make use of the notion of a randomized function. Recall that with a randomized
function, the output f (x) for an input x is a random variable that may take on different values each time
f (x) is evaluated.
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Claim 4.28. Let X and Y be random variables over [M] such that ∆(X ,Y ) = ε . Then there exists a
randomized function f : [M]→{0,1} such that f (Y ) =U{0,1}, and ∆( f (X), f (Y ))≥ ε/2.

Proof. By the definition, there exists a set T ⊂ [M] such that∣∣Pr[X ∈ T ]−Pr[Y ∈ T ]
∣∣= ε .

Without loss of generality, we can assume that Pr[Y ∈ T ] = p≤ 1/2 (because we can take the complement
of T ). Let g : [M]→ {0,1} be the indicator function of T , so we have PrY [g(Y ) = 1] = p. For every
x ∈ [M], we define f (x) = g(x)∨b, where b is a biased coin with Pr[b = 0] = 1/(2(1− p)). The claim
follows by observing that

Pr[ f (Y ) = 0] = Pr[g(Y ) = 0∧b = 0] = (1− p) ·1/(2(1− p)) = 1/2 ,

and
∆( f (X), f (Y ))≥ ∆(X ,Y ) ·Pr[b = 0]≥ ε/2 .

Claim 4.29. Let X be a Bernoulli random variable over {0,1} such that Pr[X = 0] = 1/2− ε . Let
X = (X1, . . . ,XT ) be T independent copies of X. Then

∆(X ,U{0,1}T )≥min{ε0,c
√

T ε} ,

where ε0,c are absolute constants independent of ε and T .

Proof. For x ∈ {0,1}T , let the weight wt(x) of x to be the number of 1’s in x. Let

S =

{
x ∈ {0,1}T : wt(x)≤ T

2
−
√

T
}

be the subset of {0,1}T with small weight. (This choice of S is the main source of improvement in our
proof compared to that of Reyzin [33], who instead considers the set of all x with weight at most T/2.)
For every x ∈ S, we have

Pr[X = x]≤ 1
2T · (1− ε)T/2+

√
T · (1+ ε)T/2−

√
T ≤

(
1−min

{√
T · ε
2

,
1
2

})
·Pr[U{0,1}T = x] .

By standard results on large deviation, we have

Pr[U{0,1}T ∈ S]≥Ω(1) .

Combining the above two inequalities, we get

∆(X ,U{0,1}T )≥ Pr[U{0,1}T ∈ S]−Pr[X ∈ S]

≥

(
1−

(
1−min

{√
T · ε
2

,
1
2

}))
·Pr[U{0,1}T ∈ S]

≥min

{√
T · ε
2

,
1
2

}
·Ω(1)

= min{c
√

T ε,ε0}

for some absolute constants c,ε0, which completes the proof.
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Note that applying the same randomized function f on two random variables X and Y cannot increase
the statistical distance. I. e., ∆( f (X), f (Y ))≤ ∆(X ,Y ). The lemma follows immediately by the above two
claims:

∆(X ,Y ) ≥ ∆((( f1(X1), . . . , fT (XT )),(( f1(Y1), . . . , fT (YT ))

≥ min{ε0,c
√

T ε}

where f1, . . . , fT are independent copies of the randomized function defined in Claim 4.28, and ε0,c are
absolute constants from Claim 4.29.

Proof of Theorem 4.24. The absolute constant ε0 in the theorem is a half of the ε0 in Lemma 4.27. By
Lemma 4.25 there is a flat K-source such that for 1/2-fraction of hash functions h∈H, h(X) is (2ε/c

√
T )-

far from uniform, for K = Ω((1/2)2M/(2ε/c
√

T )2) = Ω(MT/ε2). We set X = (X1, . . . ,XT ) to be T
independent copies of X . Consider a hash function h such that h(X) is (2ε/c

√
T )-far from uniform. By

Lemma 4.27, (h(X1), . . . ,h(XT )) is 2ε-far from uniform. Note that this holds for 1/2-fraction of hash
functions h. It follows that

∆((H,Y ),(H,U[M])) = E
h←H

[
∆((h(X1), . . . ,h(XT ),U[M]T )

]
≥ 1

2
·2ε = ε .

4.4.2 Lower bound for small collision probability

In this subsection, we prove lower bounds on the entropy needed per item to ensure that the sequence of
hashed values is close to having small collision probability. Since this requirement is less stringent than
being close to uniform, less entropy is needed from the source. The interesting setting in applications
is to require the hashed sequence (H,Y ) = (H,H(X1), . . . ,H(XT )) to be ε-close to having collision
probability O(1/(|H| ·MT )). Recall that in this setting, instead of requiring K ≥MT/ε2, K ≥Ω(MT/ε)
is sufficient for 2-universal hash functions (Theorem 4.11), and K ≥ Ω(MT +T

√
M/ε) is sufficient

for 4-wise independent hash functions (Theorem 4.12). The main improvement from 2-universal to
4-wise independent hashing is the better dependency on ε . Indeed, it can be shown that if we use truly
random hash functions, we can reduce the dependency on ε to log(1/ε). Since we are now proving lower
bounds for arbitrary hash families, we focus on the dependency on M and T . Specifically, our goal is
to show that K = Ω(MT ) is necessary. More precisely, we show that when K�MT , it is possible for
the hashed sequence (H,Y ) to be .99-far from any distribution that has collision probability less than
100/(|H| ·MT ).

We use the same strategy as in the previous subsection to prove this lower bound. Fixing a hash
family H, we take T independent copies (X1, . . . ,XT ) of the worst-case X found in Lemma 4.25, and
show that (H,H(X1), . . . ,H(XT )) is far from having small collision probability. The new ingredient is to
show that when we have T independent copies, and K�MT , then (h(X1), . . . ,h(XT )) is very far from
uniform (say, 0.99-far) for many h ∈H. We then argue that in this case, we can not reduce the collision
probability of (h(X1), . . . ,h(XT )) by changing a small fraction of distribution, which implies the overall
distribution (H,Y ) is far from any distribution (H ′,Z) with small collision probability. Formally, we
prove the following theorem.
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Theorem 4.30. Let N,M, and T be positive integers such that N ≥MT . Let δ ∈ (0,1) and α > 1 be
real numbers such that α < δ 3 · eT/32/128. Let H : [N]→ [M] be a random hash function from a hash
family H. There exists an integer K = Ω(δ 2MT/ log(α/δ )), and a block K-source X = (X1, . . . ,XT )
such that (H,Y ) = (H,H(X1), . . . ,H(XT )) is (1−δ )-far from any distribution (H ′,Z) with cp(H ′,Z)≤
α/(|H| ·MT ).

Think of α and δ as constants. Then the theorem says that K = Ω(MT ) is necessary for the hashed
sequence (H,H(X1), . . . ,H(XT )) to be close to having small collision probability, matching the upper
bound in Theorem 4.11. In the previous proof, we used Lemma 4.27 to measure the increase of distance
over blocks. However, the lemma can only measure the progress up to some small constant. It is known
that if the number of copies T is larger then Ω(1/ε2), where ε is the statistical distance of original copy,
then the statistical distance goes to 1 exponentially fast. Formally, we use the following lemma.

Lemma 4.31 ([34]). Let X and Y be random variables over [M] such that ∆(X ,Y ) ≥ ε . Let X =
(X1, . . . ,XT ) be T i. i. d. copies of X, and let Y = (Y1, . . . ,YT ) be T i. i. d. copies of Y . We have

∆(X ,Y )≥ 1− e−T ε2/2 .

We remark that Lemmas 4.27 and 4.31 are incomparable. In the parameter range of Lemma 4.27,
Lemma 4.31 only gives ∆(X ,Y )≥Ω(T ε2) instead of Ω(

√
T ε). To argue that the overall distribution is

far from having small collision probability, we introduce the following notion of nonuniformity.

Definition 4.32. Let X be a random variable over [M] with probability mass function p. X is (δ ,β )-
nonuniform if for every function q : [M]→ R such that 0≤ q(x)≤ p(x) for all x ∈ [M], and ∑x q(x)≥ δ ,
the function satisfies

∑
x∈[M]

q(x)2 > β/M .

Intuitively, a distribution X over [M] is (δ ,β )-nonuniform means that even if we remove (1− δ )-
fraction of probability mass from X , the “collision probability” remains greater than β/M. In particular,
X is (1−δ )-far from any random variable Y with cp(Y )≤ β/M.

Lemma 4.33. Let X be a random variable over [M]. If X is (1− η)-far from uniform, then X is
(2
√

β ·η ,β )-nonuniform for every β ≥ 1.

Proof. Let p be the probability mass function of X , and q : [M]→ R be a function such that 0 ≤
q(x) ≤ p(x) for every x ∈ [M], and ∑x q(x) ≥ 2

√
β ·η . Our goal is to show that ∑x q(x)2 > β/M. Let

T = {x ∈ [M] : p(x)≥ 1/M}. Note that

∆(X ,U[M]) = Pr[X ∈ T ]−Pr[U[M] ∈ T ]≥ 1−η .

This implies Pr[X ∈ T ]≥ 1−η , and µ(T ) = Pr[U[M] ∈ T ]≤ η . Now,

∑
x∈T

q(x)≥ 2
√

β ·η−Pr[X /∈ T ]≥ 2
√

β ·η−η >
√

β ·η ,

and µ(T )≤ η implies

∑
x∈[M]

q(x)2 ≥ ∑
x∈T

q(x)2 ≥ (∑x∈T q(x))2

|T |
>

β

M
.
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We are ready to prove Theorem 4.30.

Proof of Theorem 4.30. By Lemma 4.25 with ε =
√

2ln(128α/δ 3)/T < 1/4, there is a flat K-source
X such that for (1− δ/4)-fraction of hash function h ∈ H, h(X) is ε-far from uniform, for K =
Ω((δ/4)2M/ε2) = Ω(δ 2MT/ log(α/δ )). We set X = (X1, . . . ,XT ) to be T independent copies of X .
Consider a hash function h such that h(X) is ε-far from uniform. By Lemma 4.31, (h(X1), . . . ,h(XT ))

is (1− η)-far from uniform, for η = e−ε2T/2 = δ 3/128α . By Lemma 4.33, (h(X1), . . . ,h(XT )) is
(δ/4,2α/δ )-nonuniform for (1−δ/4)-fraction of hash functions h. By the first statement of Lemma 4.34
below, this implies that (H,Y ) is (1− δ )-far from any distribution (H ′,Z) with collision probability
α/(|H| ·MT ).

Lemma 4.34. Let (H,Y ) be a joint distribution over H× [M] such that the marginal distribution H is
uniform over H. Let ε,δ ,α be positive real numbers.

1. If Y |H=h is (δ/4,2α/δ )-nonuniform for at least (1− δ/4)-fraction of h ∈ H, then (H,Y ) is
(1−δ )-far from any distribution (H ′,Z) with cp(H ′,Z)≤ α/(|H| ·M).

2. If Y |H=h is (0.1,2α/ε)-nonuniform for at least 2ε-fraction of h ∈H, then (H,Y ) is ε-far from any
distribution (H ′,Z) with cp(H ′,Z)≤ α/(|H| ·M).

Proof. We introduce the following notations first. For every h ∈H, we define qh : [M]→ R by

qh(y) = min{Pr[(H,Y ) = (h,y)],Pr[(H ′,Z) = (h,y)]}

for every y ∈ [M]. We also define f : H→ R by

f (h) = ∑
y∈[M]

qh(y)≤ Pr[H = h] =
1
|H|

.

For the first statement, let (H ′,Z) be a random variable over H× [M] that is (1−δ )-close to (H,Y ).
We need to show that cp(H ′,Z)> α/(|H| ·M). Note that ∑h f (h) = 1−∆((H,Y ),(H ′,Z))≥ δ . So there
are at least a (3δ/4)-fraction of hash functions h with f (h)≥ (δ/4)/|H|. At least a (3δ/4)− (δ/4) =
δ/2-fraction of h satisfy both f (h)≥ (δ/4)/|H| and Y |H=h is (δ/4,2α/δ )-nonuniform. By the definition
of nonuniformity, for each such h, we have

∑
y∈[M]T

(|H| ·qh(y))2 >
2α

δ ·M
.

Therefore,

cp(H ′,Z)≥∑
h,y

qh(y)2 >

(
δ

2
· |H|

)
· 2α

δ · |H|2M
=

α

|H| ·M
.

Similarly, for the second statement, let (H ′,Z) be a random variable over H× [M] that is ε-close to
(H,Y ). We need to show that cp(H ′,Z)>α/(|H| ·M). Note that ∑h f (h)= 1−∆((H,Y ),(H ′,Z))≥ 1−ε .
So there are at least a 1− ε/0.9-fraction of h with f (h)≥ 0.1/|H|. At least a 2ε− ε/0.9 > ε/2-fraction
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of hash functions satisfy both f (h)≥ 0.1/|H| and Y |H=h is (0.1,2α/ε)-nonuniform. By Lemma 4.33,
for each such h, we have

∑
y∈[M]

(|H| ·qh(y))2 >
2α

ε ·M
.

Therefore,

cp(H ′,Z)≥∑
h,y

qh(y)2 >
(

ε

2
· |H|

)
· 2α

ε · |H|2M
=

α

|H| ·M
.

4.4.3 Lower bounds for the distribution of hashed values only

We can extend our lower bounds to the distribution of hashed sequence Y = (H(X1), . . . ,H(XT )) along
(without H) for both closeness requirements, at the price of losing the dependency on ε and incurring some
dependency on the size of the hash family. Let 2d = |H| be the size of the hash family. The dependency
on d is necessary. Intuitively, the hashed sequence Y contains at most T ·m bits of entropy, and the input
(H,X1, . . . ,XT ) contains at least d+T ·k bits of entropy. When d is large enough, it is possible that all the
randomness of hashed sequence comes from the randomness of the hash family. Indeed, if H is T -wise
independent (which is possible with d ' T ·m), then (H(X1), . . . ,H(XT )) is uniform when X1, . . . ,XT are
all distinct. Therefore,

∆((H(X1), . . . ,H(XT )),U[M]T )≤ Pr[not all X1, . . . ,XT are distinct] .

Thus, K = Ω(T 2) (independent of M) suffices to make the hashed value close to uniform.

Theorem 4.35. Let N,M,T be positive integers, and d a positive real number such that N ≥MT/d. Let
δ ∈ (0,1), α > 1 be real numbers such that α ·2d < δ 3 ·eT/32/128. Let H : [N]→ [M] be a random hash
function from an hash family H of size at most 2d . There exists an integer K = Ω(δ 2MT/d · log(α/δ )),
and a block K-source X = (X1, . . . ,XT ) such that Y = (H(X1), . . . ,H(XT )) is (1− δ )-far from any
distribution Z = (Z1, . . . ,ZT ) with cp(Z)≤ α/MT . In particular, Y is (1−δ )-far from uniform.

Think of α and δ as constants. Then the theorem says that when the hash function contains
d ≤ T/(32ln2)−O(1) bits of randomness, K = Ω(MT/d) is necessary for the hashed sequence to be
close to uniform. For example, in some typical hash applications, N = poly(M) and the hash function
is 2-universal or O(1)-wise independent. In this case, d = O(logM) and we need K = Ω(MT/ logM).
(Recall that our upper bound in Theorem 4.11 says that K = O(MT ) suffices.)

Proof. We will deduce the theorem from Theorem 4.30. Replacing the parameter α by α · 2d in
Theorem 4.30, we know that there exists an integer K = Ω(δ 2MT/d · log(α/δ )) and a block K-source
X = (X1, . . . ,XT ) such that (H,Y ) = (H,H(X1), . . . ,H(XT )) is (1−δ )-far from any distribution (H ′,Z)
with cp(H ′,Z) ≤ α ·2d/(2d ·MT ) = α/MT . Now, suppose we are given a random variable Z on [M]T

with ∆(Y ,Z)≤ 1−δ . Then we can define an H ′ such that ∆((H,Y ),(H ′,Z)) = ∆(Y ,Z) (Indeed, define
the conditional distribution H ′|Z=z to equal H|Y=z for every z ∈ [M]T .) Then we have

cp(Z)≥ cp(H ′,Z)>
α

MT .
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One limitation of the above lower bound is that it only works when d ≤ T/(32ln2)−O(1). For
example, the lower bound cannot be applied when the hash function is T -wise independent. Although
d = Ω(T ) may not be interesting in practice, for the sake of completeness, we provide another simple
lower bound to cover this parameter region.

Theorem 4.36. Let N,M,T be positive integers, and δ ∈ (0,1), α > 1, d > 0 real numbers. Let
H : [N]→ [M] be a random hash function from an hash family H of size at most 2d . Suppose K ≤ N be
an integer such that K ≤ (δ 2/4α ·2d)1/T ·M. Then there exists a block K-source X = (X1, . . . ,XT ) such
that Y = (H(X1), . . . ,H(XT )) is (1−δ )-far from any distribution Z = (Z1, . . . ,ZT ) with cp(Z)≤ α/MT .
In particular, Y is (1−δ )-far from uniform.

Again, think of α and δ as constants. The theorem says that K = Ω(M/2d/T ) is necessary for
the hashed sequence to be close to uniform. In particular, when d = Θ(T ), K = Ω(M) is necessary.
Theorem 4.35 gives the same conclusion, but only works for d ≤ T/(32ln2)−O(1). On the other hand,
when d = o(T ), Theorem 4.35 gives better lower bound K = Ω(MT/d).

Proof. Let X be any flat K-source, i. e., a uniform distribution over a set of size K. We simply take
X = (X1, . . . ,XT ) to be T independent copies of X . Note that Y has support at most as large as (H,X).
Thus,

|supp(Y )| ≤ |supp(H,X)|= 2d ·KT ≤ δ 2

4α
·MT .

Therefore, Y is (1−δ 2/4α)-far from uniform. By Lemma 4.33, Y is (1−δ )-far from any distribution
Z = (Z1, . . . ,ZT ) with cp(Z)≤ α/MT .

4.4.4 Lower bound for 2-universal hash functions

In this subsection, we show Theorem 4.11 is almost tight in the following sense. We show that there exists
K = Ω(MT/ε · log(1/ε)), a 2-universal hash family H, and a block K-source X such that (H,Y ) is ε-far
from having collision probability 100/(|H| ·MT ). The improvement over Theorem 4.30 is the almost
tight dependency on ε . Recall that Theorem 4.11 says that for 2-universal hash family, K = O(MT/ε)
suffices. The upper and lower bound differs by a factor of log(1/ε). In particular, our result for 4-wise
independent hash functions (Theorem 4.12) cannot be achieved with 2-universal hash functions. The
lower bound can further be extended to the distribution of hashed sequence Y = (H(X1), . . . ,H(XT )) as
in the previous subsection. Furthermore, since the 2-universal hash family we use has small size, we only
pay a factor of O(logM) in the lower bound on K. Formally we prove the following results.

Theorem 4.37. For every prime power M, real numbers ε ∈ (0,1/4) and α ≥ 1, the following holds.
For all integers t and N such that ε ·Mt−1 ≥ 1 and N ≥ 6εM2t , and for T = dε2M2t−1 log(α/ε)e,2 there
exists an integer K = Ω(MT/ε · log(α/ε)), and a 2-universal hash family H from [N] to [M], and a
block K-source X = (X1, . . . ,XT ) such that (H,Y ) = (H,H(X1), . . . ,H(XT )) is ε-far from any distribution
(H ′,Z) with cp(H ′,Z)≤ α/(|H| ·MT ).

2For technical reasons, our lower bound proof does not work for every sufficiently large T . However, note that the density of
T such that the lower bound holds is 1/M2.
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Theorem 4.38. For every prime power M, real numbers ε ∈ (0,1/4) and α ≥ 1, the following holds. For
all integers t and N such that ε ·Mt−1 ≥ 1 and N ≥ 6εM2t , and for T = dε2M2t−1 log(αM/ε)e, there
exists an integer K = Ω(MT/ε · log(αM/ε)), and a 2-universal hash family H from [N] to [M], and a
block K-source X = (X1, . . . ,XT ) such that Y = (H(X1), . . . ,H(XT )) is ε-far from any distribution Z with
cp(Z)≤ α/MT .

Basically, the idea is to show that the Markov inequality applied in the proof of Theorem 4.11 (see
inequality (4.1)) is tight for a single block. More precisely, we show that there exists a 2-universal hash
family H, and a K-source X such that with probability ε over h← H, cp(h(X)) ≥ 1/M +Ω(1/Kε).
Intuitively, if we take T = Θ(Kε · log(α/ε)/M) independent copies of such X , then the collision proba-
bility will satisfy cp(h(X1), . . . ,h(XT ))≥ (1+Ω(M/Kε))T/MT ≥ α/(εMT ), and so the overall collision
probability is cp(H,Y )≥ α/(|H| ·MT ). Formally, we analyze our construction below using Hellinger
distance, and show that the collision probability remains high even after modifying a Θ(ε)-fraction of
distribution.

Proof of Theorem 4.37. Fix a prime power M, and ε > 0, we identify [M] with the finite field F of size
M. Let t be an integer parameter such that Mt−1 > 1/ε . Recall that the set H0 of linear functions
{h~a : Ft → F}~a∈Ft where h~a(~x) = ∑i aixi is 2-universal. Note that picking a random hash function h←H0
is equivalent to picking a random vector ~a← Ft . Two special properties of H0 are (i) when ~a =~0, the
whole domain Ft is sent to 0 ∈ F, and (ii) the size of hash family |H0| is the same as the size of the
domain, namely |Ft |. We will use H0 as a building block in our construction.

We proceed to construct the hash family H. We partition the domain [N] into several sub-domains,
and apply different hash function to each sub-domain. Let s be an integer parameter to be determined later.
We require N ≥ s ·Mt , and partition [N] into D0,D1, . . . ,Ds, where each of D1, . . . ,Ds has size Mt and is
identified with Ft , and D0 is the remaining part of [N]. In our construction, the data X will never come
from D0. Thus, w. l. o. g., we can assume D0 is empty. For every i = 1, . . . ,s, we use a linear hash function
h~ai ∈H0 to send Di to F. Thus, a hash function h ∈H consists of s linear hash function (h~a1 , . . . ,h~as),
and can be described by s vectors ~a1, . . . ,~as ∈ Ft . Note that to make H 2-universal, it suffices to pick
~a1, . . . ,~as pairwise independently. Specifically, we identify Ft with the finite field F̂ of size Mt , and pick
(~a1, . . . ,~as) by picking a,b ∈ F̂, and output (a+α1 ·b,a+α2 ·b, . . . ,a+αs ·b) for some distinct constants
α1, . . . ,αs ∈ F̂. Formally, we define the hash family to be

H = {ha,b : [N]→ [M]}a,b∈F̂, where ha,b = (ha+α1b, . . . ,ha+αsb)
def
= (ha,b

1 , . . . ,ha,b
s ) .

It is easy to verify that H is indeed 2-universal, and |H|= M2t .
We next define a single block K-source X that makes the Markov inequality (4.1) tight. We simply

take X to be a uniform distribution over D1 ∪ ·· · ∪Ds, and so K = s ·Mt . Consider a hash function
ha,b ∈H. If all ha,b

i are non-zero and distinct, then ha,b(X) is the uniform distribution. If exactly one
ha,b

i = 0, then ha,b sends Mt +(s−1)Mt−1 elements in [N] to 0, and (s−1)Mt−1 elements to each nonzero
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y ∈ F. Let us call such ha,b bad hash functions. Thus, if ha,b is bad, then

cp(ha,b(X)) =

(
Mt +(s−1)Mt−1

K

)2

+(M−1) ·
(
(s−1)Mt−1

K

)2

=
1
M

+
M−1
s2M

≥ 1
M

+
1

2s2 .

Note that ha,b is bad with probability

Pr[exactly one ha,b
i = 0] = Pr[b 6= 0∧∃i (a+αib = 0)] =

(
1− 1

Mt

)
· s

Mt ≥
s

2Mt .

We set s = d4εMte ≤Mt . It follows that with probability at least 2ε over h←H, the collision probability
satisfies cp(h(X)) ≥ 1/M + 1/(4Kε), as we intuitively desired. However, instead of working with
collision probability directly, we need to use Bhattacharyya coefficient to measure the growth of distance
to uniform (see Definition 4.18.) The following claim upper bounds the Bhattacharyya coefficient of h(X)
for bad hash functions h. The proof of the claim is deferred to the end of this section.

Claim 4.39. Suppose h is a bad hash function defined as above, then the Bhattacharyya coefficient of
h(X) satisfies C(h(X))≤ 1−M/(64Kε).

Finally, for every integer T ∈ [ε2M2t−1 log(α/ε),c0 · ε2M2t−1 log(α/ε)], we can write T = c ·
(64Kε/M) · ln(800α/ε) for some constant c < c0. Let X = (X1, . . . ,XT ) be T independent copies of X .
We now show that K,H,X satisfy the conclusion of the theorem. That is, K = Ω(MT/(ε log(α/ε)))
(as follows from the definition of T ) and (H,Y ) = (H,H(X1), . . . ,H(XT )) is ε-far from any distribution
(H ′,Z) with cp(H ′,Z)≤ α/(|H| ·MT ).

Consider the distribution (h(X1), . . . ,h(XT )) for a bad hash function h ∈H. From the above claim,
the Bhattacharyya coefficient satisfies

C(h(X1), . . . ,h(XT )) =C(h(X))T ≤ (1−M/64Kε)T ≤ eMT/64Kε ≤ 800α

ε
.

By Lemma 4.19 and the definition of Bhattacharyya coefficient, we have

∆((h(X1), . . . ,h(XT )),U[M]T )≥ 1−C(h(X1), . . . ,h(XT ))≥ 1− 800α

ε
.

By Lemma 4.33, (h(X1), . . . ,h(XT )) is (0.1,2α/ε)-nonuniform for at least 2ε-fraction of bad hash
functions h. By the second statement of Lemma 4.34, this implies (H,Y ) is ε-far from any distribution
(H ′,Z) with cp(H ′,Z)≤ α/(|H| ·MT ).

In sum, given M,ε,α, t that satisfies the premise of the theorem, we set K = d4εMte ·Mt , and proved
that for every N ≥ K, and T = Θ((Kε/M) · ln(α/ε)), the conclusion of the theorem is true. It remains to
prove Claim 4.39.

Proof of Claim 4.39. Let p(x) = M · Pr[h(X) = x] for every x ∈ F. For a bad hash function h, we
have p(0) = (1+(M− 1)/s), and p(x) = (1− 1/s) for every x 6= 0. We will upper bound C(h(X)) =

THEORY OF COMPUTING, Volume 9 (30), 2013, pp. 897–945 932

http://dx.doi.org/10.4086/toc


WHY SIMPLE HASH FUNCTIONS WORK: EXPLOITING THE ENTROPY IN A DATA STREAM

(1/M) ·∑x
√

p(x) using Taylor series. Recall that for z≥ 0, there exists some z′,z′′ ∈ [0,z] such that

√
1+ z = 1+

z
2
+

z2

2
·
(
− 1

4(1+ z′)3/2

)
≤ 1+

z
2
− z2

8(1+ z)3/2

and

√
1− z = 1− z · 1

2
√

1− z′′
≤ 1− z

2
.

We have

C(h(X)) =
1
M ∑

x

√
p(x)

≤ 1
M

(
1+

M−1
2s
− (M−1)2

8s2 · (1+(M−1)/s)3/2 +(M−1) ·
(

1− 1
2s

))
= 1− (M−1)2

8Ms2(1+(M−1)/s)3/2 .

Recall that M ≥ 2, s = εMt ≥M, and s2 = Kε , we have

C(h(X))≤ 1− M2

64Kε
.

This concludes the proof of Theorem 4.37.

Recall that |H|= M2t . Theorem 4.38 follows from Theorem 4.37 by exactly the same argument as in
the proof of Theorem 4.35.

5 Applications

5.1 Linear probing

We consider data items come as a block K-source (X1, . . . ,XT−1,XT ) where the item Y = XT to be inserted
is the last block. An immediate application of Theorem 4.10, using just a 2-universal hash family, gives
that if K ≥MT/ε2, the resulting distribution of the element hashes is ε-close to uniform. The effect of
the ε statistical difference on the expected insertion time is at most εT , because the maximum insertion
time is T . That is, if we let EU be the expected time for an insertion when using a truly random hash
function, and EP be the expected time for an insertion using pairwise independent hash functions, we
have

EP ≤ EU + εT .

A natural choice is ε = o(1/T ), so that the εT term is o(1), giving that K needs to be ω(MT 3) =ω(M4) in
the standard case where T = αM for a constant α ∈ (0,1) (which we assume henceforth). An alternative
interpretation is that with probability 1− ε , our hash table behaves exactly as though a truly random hash
function was used. In some applications, constant ε may be sufficient, in which case K = O(M2) suffices.
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Better results can be obtained by applying Lemma 4.8, in conjunction with Theorem 4.11 or The-
orem 4.12. In particular, for linear probing, the standard deviation σ of the insertion time is known
(see, e. g., [16, p.52]) and is O(1/(1−α)2). With a 2-universal family, as long as K ≥ MT/ε , from
Theorem 4.11 the resulting hash values are ε-close to a block source with collision probability at most
(1+2MT/(εK))/MT . Using this, we apply Lemma 4.8 to bound the expected insertion time as

EP ≤ EU + εT +σ

√
2MT
εK

.

Choosing ε = o(1/T ) gives that EP and EU are the same up to lower order terms when K is ω(M3).
Theorem 4.12 gives a further improvement; for K ≥MT +

√
2MT 2/ε , we have

EP ≤ EU + εT +σ

√
2MT +2

√
2MT 2/ε

K
.

Choosing ε = o(1/T ) now allows for K to be only ω(M2).
In other words, the Rényi entropy needs only to be 2logM+ω(1) bits when using 4-wise independent

hash functions, and 3logM+ω(1) for 2-universal hash functions. These numbers seem quite reasonable
for practical situations. We formalize the result for the case of 2-universal hash functions as follows:

Theorem 5.1. Let H be chosen at random from a 2-universal hash family H mapping [N] to [M]. For
every block K-source (X ,Y ) taking values in [N]T with K ≥MT/ε , we have

E[TimeLP(H,X ,Y )]≤ 1/(1−α)2 + εT +σ

√
2MT
εK

.

Here α = T/M is the load and σ = O(1/(1−α)2) is the standard deviation in the insertion time in the
case of truly random hash functions.

5.2 Chained hashing

We can follow essentially the same line of argument as in the previous section. Recall here T elements
are hashed into a table of size M = T . Theorem 4.10 again implies that using just a 2-universal hash
family, if K ≥MT/ε2 = T 2/ε2, the resulting distribution of the element hashes is ε-close to uniform. In
this case, if we let EU be the expected maximum load when using a truly random hash function, and EP

be the expected maximum load using a 2-universal hash function, we again have

EP ≤ EU + εT ,

and similarly having K be ω(T 4) suffices.
Similarly, extending the argument for Theorem 5.1, we deduce that if K ≥ T 2/ε , then

E[MaxLoadCH(X ,H)]≤ (1+o(1)) · logT
log logT

+ εT +σ

√
2T 2

εK
,

where the o(1) term goes to zero as T → ∞ and σ is the standard deviation in the maximum load in the
case of a truly random hash function.

However, here we get a cleaner “high-probability” result by using Theorem 4.11:
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Theorem 5.2. Let H be chosen at random from a 2-universal hash family H mapping [N] to [T ]. For
every block K-source X taking values in [N]T with K = ω(T 2), we have

Pr
[

MaxLoadCH(X ,H)≤ logT
log logT

(1+o(1))
]
= 1−o(1) ,

where the o(1) terms tend to zero as T → ∞.

Proof. Set M = T . Note that the value of MaxLoadCH(x,h) can be determined from the hashed sequence
(h(x1), . . . ,h(xT )) ∈ [M]T alone, and does not otherwise depend on the data sequence x or the hash
function h. Thus for a function λ : N→ N, we can let S ⊆ [M]T be the set of all sequences of hashed
values that produce an allocation with a max load greater than λ (T ). By Theorem 3.4, we can take
λ (T ) = (1+o(1)) · (logT )/(log logT ) so that we have:

Pr[U[M]T ∈ S] = Pr [MaxLoadCH(x, I)> λ (T )] = o(1) ,

where I is a truly random hash function mapping [N] to [M] = [T ] and x is an arbitrary sequence of distinct
data items.

We are interested in the quantity:

Pr[MaxLoadCH(X ,H)> λ (T )] = Pr[(H(X1), . . . ,H(XT )) ∈ S] ,

where H is a random hash function from a 2-universal family. Given K =ω(T 2), we set ε =MT/K = o(1).
By Theorem 4.11, (H(X1), . . . ,H(XT )) is ε-close to a random variable Z with collision probability at
most (1+2MT/(εK))/MT = 3/MT per block. Thus, applying Lemma 4.8 with f as the characteristic
function of S and µ = E[ f (U[M]T )]≤ o(1), we have

Pr[(H(X1), . . . ,H(XT )) ∈ S]≤ Pr[Z ∈ S]+ ε

≤ µ +
√

µ · (1−µ) ·
√

3+ ε

= o(1) .

5.3 Balanced allocations

By combining the known analysis for ideal hashing (Theorem 3.6), our optimized bounds for block-source
extraction (Theorems 4.11 and 4.12), and the effect of collision probability on expectations (Lemma 4.8),
we obtain:

Theorem 5.3. For every d ≥ 2 and γ > 0, there is a constant c such the following holds. Let H be chosen
at random from a 2-universal hash family H mapping [N] to [T ]d . For every block K-source X taking
values in [N]T with K ≥ 2T d+1+γ , we have

Pr
[

MaxLoadBA(X ,H)>
log logT

logd
+ c
]
≤ 1

T γ
.
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Proof. Set M = T d . Note that the value of MaxLoadBA(x,h) can be determined from the hashed sequence
(h(x1), . . . ,h(xT )) ∈MT alone, and does not otherwise depend on the data sequence x or the hash function
h. Thus we can let S⊆MT be the set of all sequences of hashed values that produce an allocation with a
max load greater than (log logT )/(logd)+ c. By Theorem 3.6, we can choose the constant c such that

Pr
[
U[M]T ∈ S

]
= Pr

[
MaxLoadBA(x, I)>

log logT
logd

+ c
]
≤ 1

T 3γ
,

where I is a truly random hash function mapping [N] to [M] = [T ]d and x is an arbitrary sequence of
distinct data items.

We are interested in the quantity

Pr
[

MaxLoadBA(X ,H)>
log logT

logd
+ c
]
= Pr [(H(X1), . . . ,H(XT )) ∈ S] .

Set ε = 1/2T γ and K = 2T d+1+γ = MT/ε . By Theorem 4.11, (H(X1), . . . ,H(XT )) is ε-close to a random
variable Z with collision probability at most (1+2MT/(εK))/MT = 3/MT per block. Thus, applying
Lemma 4.8 with f as the characteristic function of S and µ = E[ f (U[M]T )]≤ 1/T 3γ , we have

Pr[(H(X1), . . . ,H(XT )) ∈ S]≤ Pr[Z ∈ S]+ ε

≤ µ +
√

µ · (1−µ) ·
√

3+ ε

≤ 1
T 3γ

+

√
3

T 3γ
+

1
2T γ

≤ 1
T γ

,

for sufficiently large T . (Small values of T can be handled by increasing the constant c in the theorem.)

Theorem 5.4. For every d ≥ 2 and γ > 0, there is a constant c such the following holds. Let H be chosen
at random from a 4-wise independent hash family H mapping [N] to [T ]d . For every block K-source X
taking values in [N]T with K ≥ (T d+1 +2T (d+2+γ)/2), we have

Pr
[

MaxLoadBA(X ,H)>
log logT

logd
+ c
]
≤ 1

T γ
.

Proof. The proof is identical to that of Theorem 5.3, except we use Theorem 4.12 instead of Theorem 4.11
and set K = T d+1 +T (d+2+γ)/2 = MT +

√
2MT 2/ε .

5.4 Bloom filters

We consider the following setting: our block source takes on values in [N]T+1, producing a collection
(x1, . . . ,xT ,y) = (x,y), where x constitutes the set represented by the filter, and y represents an additional
data item that will not be equal to any data items of x (with high probability).

We first take the advantage of the following result by [19], which reduces the number of required
hash function from ` to 2.
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Theorem 5.5 ([19]). Let H = (H1,H2) be a truly random hash function mapping [N] to [M/`]2, where
M/` is a prime integer. Define H ′ = (H ′1, . . . ,H

′
`) : [N]→ [M/`]` by

H ′i (w) = H1(w)+(i−1)H2(w) mod M/`.

Then for every sequence x ∈ [N]T of T data items and every y /∈ x, we have

Pr[FalsePosBF(H ′,x,y) = 1]≤

(
1−
(

1− `

M

)T
)`

+O(1/M) .

The restriction to prime integers M/` is not strictly necessary in general; for more complete statements
of when 2 truly random hash functions suffice, see [19].

If we allow the false positive probability to increase by some ε > 0 over truly random hash functions,
we can use Theorem 4.10 to immediately obtain the following parallel to Theorem 5.5:3

Theorem 5.6. Let H = (H1,H2) be chosen at random from a 2-universal hash family H mapping [N] to
[M/`]2, where M/` is a prime integer. Define H ′ = (H ′1, . . . ,H

′
`) : [N]→ [M/`]` by

H ′i (w) = H1(w)+(i−1)H2(w) mod M/`.

For every ε > 1/M and every block K-source (X ,Y ) taking values in [N]T × [N] ∼= [N]T+1 with K ≥
M2T/ε2`2, we have

Pr[FalsePosBF(H ′,X ,Y ) = 1]≤

(
1−
(

1− `

M

)T
)`

+O(ε) .

If we set ε = o(1), then we obtain the same asymptotic false positive probabilities as with truly
random hash functions. When T = Θ(M), the Rényi entropy per block needs only to be 3logM+ω(1)
bits for 2-universal hash functions.

6 Alternative approaches

The results we have described in Section 5 rely on very general arguments, referring to the collision
probability of the entire sequence of hashed data values. We suggest, however, that it may prove useful in
the future to view the results of hashing block sources in this paper as a collection of tools that can be
applied in various ways to specific applications. For example, here we present a variant of Theorems 4.11
and 4.12, asserting that the hashed values are close to a block source with bounded collision probability
per block, which may yield improved results in some cases.

Theorem 6.1. Let H : [N]→ [M] be a random hash function from a 2-universal family H. For every
block K-source (X1, . . . ,XT ) and every ε > 0, the random variable Y = (H(X1), . . . ,H(XT )) is ε-close to
a block source Z with collision probability 1/M+T/(εK) per block.

3We note that the approach of using Lemma 4.8 along with Theorems 4.11 and 4.12 in the previous sections does not yield
improvement here, since in the typical case of Bloom filters, the false positive probability is a constant, instead of o(1).
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Theorem 6.2. Let H : [N]→ [M] be a random hash function from a 4-wise independent family H. For
every block K-source (X1, . . . ,XT ) and for every ε > 0, the random variable Y = (H(X1), . . . ,H(XT )) is
ε-close to a block source Z with collision probability 1/M+1/K +

√
2T/(εM) ·1/K per block.

Theorem 6.1 and 6.2 can be proved in a similar way to the proof of Theorem 4.11 and 4.12, where
instead of applying Markov/Chebychev’s inequality to the whole sequence once, here we apply the
inequalities to each block to achieve the stronger conclusion.

We sketch an example of how these results can be applied to more specific arguments for an application.
In the standard layered induction argument for balanced allocations [2], the following key step is used.
Suppose that there are at most βiT buckets with load at least i throughout the process. Then (using truly
random hash functions) the probability that a data item with d choices lands in a bin with i or more
balls already present is bounded above by (βi)

d . When using 2-universal hash functions, we can bound
this probability, but with slightly weaker results. The choices for a data item correspond to the hash
of one of the blocks from the input block source. Let S be the set of size at most (βi)

d possible hash
values for the item’s choices that would place the item in a bin with i or more balls. We can bound
the probability that the item hashes to a value in S by bounding the collision probability per block (via
Theorem 6.1) and applying Lemma 4.8 with f equal to the characteristic function of S. We have applied
this technique to generalize the standard layered induction proof of [2] to this setting. This approach
turns out to require slightly less entropy from the source for 2-universal hash functions than Theorem 5.3,
but the loss incurred in applying Lemma 4.8 means that the analysis only works for d ≥ 3 choices and the
maximum load changes by a constant factor (although the O(log logn) behavior is still apparent). We
omit the details.

7 Conclusion

We have started to build a link between previous work on randomness extraction and the practical
performance of simple hash functions, specifically 2-universal hash functions. In the future, we hope that
there will be a collaboration between theory and systems researchers aimed at fully understanding the
behavior of hashing in practice. Indeed, while our view of data as coming from a block source is a natural
initial suggestion, theory–systems interaction could lead to more refined and realistic models for real-life
data (and in particular, provide estimates for the amount of entropy in the data). A complementary
direction is to show that hash functions used in practice (such as those based on cryptographic functions,
which may not even be 2-universal) behave similarly to truly random hash functions for these data models.
Some results in this direction can be found in [12].
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A Technical lemma on binomial coefficients

Claim A.1 (Claim 4.26, restated). Let N,K > 1 be integers such that N > 2K, and L ∈ [0,K/2], β ∈
(0,min{1,

√
L}) real numbers. Let S⊂ [N] be a random subset of size K, and T ⊂ [N] be a fixed subset

of [N] of arbitrary size. We have

Pr
S

[
||S∩T |−L| ≤ β

√
L
]
≤ O(β ) .

Proof. By an abuse of notation, we use T to denote the size of set T . The probability can be expressed as
a sum of binomial coefficients as follows.

Pr
S

[
||S∩T |−L| ≤ β

√
L
]
=
bL+β

√
Lc

∑
R=dL−β

√
Le

(T
R

)(N−T
K−R

)(N
K

) .

Note that there are at most b2β
√

Lc+1 terms, it suffices to show that for every R ∈
[
L−β

√
L,L+β

√
L
]
,

f (T ) def
=

(T
R

)(N−T
K−R

)(N
K

) ≤ O

(√
1
L

)
.

We use the following bound on binomial coefficients, which can be derived from Stirling’s formula.

Claim A.2. For integers 0 < i < a, 0 < j < b, we have(a
i

)(b
j

)(a+b
i+ j

) ≤ O

(√
a ·b · (i+ j) · (a+b− i− j)
i · (a− i) · j · (b− j) · (a+b)

)
.

Note that L ∈ [0,K/2] implies K−R = Ω(K). When 2R≤ T ≤ N−2K +2R, we have

f (T ) =

(T
R

)(N−T
K−R

)(N
K

)
= O

(√
T (N−T )K(N−K)

R(T −R)(K−R)(N−T −K +R)N

)

= O

(√
1
R
· K

K−R
· N−K

N
· T (N−T )
(T −R)(N−T −K +R)

)

= O

(√
1
R

)
= O

(√
1
L

)
,

as desired. Note that when N > 2K, such T exists. Finally, observe that β 2 < L implies R≥ 1, and

f (T )
f (T +1)

=
(T −R+1)(N−T )

(T +1)(N−T −K +R)
.

It follows that f (T ) is increasing when T ≤ 2R, and f (T ) is decreasing when T ≥N−2K+2R. Therefore,
f (T )≤ f (2R) = O(

√
1/L) for T ≤ 2R, and f (T )≤ f (N−2K+2R) = O(

√
1/L) for T ≥ N−2K+2R,

which complete the proof.
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