THEORY OF COMPUTING, Volume 10 (17), 2014, pp. 453-464
www.theoryofcomputing.org

An Optimal Lower Bound for
Monotonicity Testing over Hypergrids

Deeparnab Chakrabarty C. Seshadhri*

Received April 2, 2014; Revised December 3, 2014; Published December 24, 2014

Abstract: For positive integers n,d, the hypergrid [1n]? is equipped with the coordinatewise
product partial ordering denoted by <. A function f : [n]? — N is monotone if Vx < y,
f(x) < f(y). A function f is e-far from monotone if at least an € fraction of values must be
changed to make f monotone. Given a parameter €, a monotonicity tester must distinguish
with high probability a monotone function from one that is &-far.

We prove that any (adaptive, two-sided) monotonicity tester for functions f : [n]¢ — N
must make Q (e~ !'dlogn — e 'loge~!) queries. Recent upper bounds show the existence
of O(¢~'dlogn) query monotonicity testers for hypergrids. This closes the question of
monotonicity testing for hypergrids over arbitrary ranges. The previous best lower bound for
general hypergrids was a non-adaptive bound of Q(dlogn).

ACM Classification: F.1.2, F2.2
AMS Classification: 68Q17, 68W20

Key words and phrases: lower bounds, property testing, monotonicity testing

1 Introduction

Given query access to a function f, the area of property testing [21, 17] deals with the problem of
determining properties of f without accessing all its inputs. Monotonicity testing [16] is a classic problem

A conference version of this paper appeared in the Proceedings of the 17th Internat. Workshop on Randomization and
Computation (RANDOM 2013) [11].

*This work was funded by the DARPA Graph-theoretic Research in Algorithms and the Phenomenology of Social Networks
(GRAPHS) program and by the DOE ASCR Complex Interconnected Distributed Systems (CIDS) program, and Sandia’s
Laboratory Directed Research & Development (LDRD) program. Sandia National Laboratories is a multi-program laboratory
managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S.
Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

© 2014 Deeparnab Chakrabarty and C. Seshadhri
@@ Licensed under a Creative Commons Attribution License (CC-BY) DOI: 10.4086/toc.2014.v010a017

http://dx.doi.org/10.4086/toc
http://theoryofcomputing.org/copyright2009.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4086/toc.2014.v010a017

DEEPARNAB CHAKRABARTY AND C. SESHADHRI

in property testing. Consider a function f : D — R, where D is a finite set equipped with a partial
order given by “<,” and R is a set equipped with a total order. The function f is monotone if for all
x <y (in D), f(x) < f(y). The distance to monotonicity of f is the minimum fraction of values that
need to be modified to make f monotone. More precisely, let the distance between functions d(f, g) be
[{x: f(x) # g(x)}|/|D|, and let M be the set of all monotone functions. Then the distance to monotonicity
of fis mingeyd(f,g). (This minimum always exists since D is finite.)

A function is called e-far from monotone if the distance to monotonicity is strictly greater than €.
A property tester for monotonicity is a, possibly randomized, algorithm that takes as input a distance
parameter € € (0, 1), error parameter € [0, 1], and query access to an arbitrary f. If f is monotone, then
the tester must accept with probability > 1 — &. If it is e-far from monotone, then the tester rejects with
probability > 1 — §. If neither, then the tester is allowed to do anything. The aim is to design a property
tester making as few queries as possible to the function. A tester is called one-sided if it always accepts a
monotone function. A tester is called non-adaptive if the queries made do not depend on function values
returned in the previous queries. The most general tester is an adaptive, two-sided tester.

Monotonicity testing has a rich history and the hypergrid domain, [1]¢, has received special attention.
The boolean hypercube (n = 2) and the total order (d = 1) are special instances of hypergrids. Following
a long line of work [13, 16, 12, 19, 15, 1, 14, 18, 20, 2, 3, 4], previous work of the authors [10] shows
the existence of O(e~!dlogn)-query monotonicity testers. The result in this paper is a matching lower
bound that is optimal in all parameters for functions of unbounded range.

Theorem 1.1. Any adaptive, two-sided monotonicity tester for functions f : [n]* — N requires

o <dlogn—810g8_1>

queries, assuming € > nd

1.1 Previous work

The problem of monotonicity testing was introduced by Goldreich et al. [16], who demonstrated a O(n/¢)
tester for functions f : {0,1}" — {0,1}. The first tester for general hypergrids was given by Dodis et
al. [12]. The upper bound of O(¢~'dlogn) for monotonicity testing was recently proven in [10]. We
refer the interested reader to the introduction of [10] for a more detailed history of previous upper bounds.

There have been numerous lower bounds for monotonicity testing. Following the work of Ergun
et al. [13] who demonstrated an Q(logn) lower bound for non-adaptive monotonicity testers, for the
total order D = [n], Fischer [14] gave an Q(logn) lower bound for adaptive monotonicity testers as well
over [n]. For the hypercube domain, Fischer et al. [15] proved a Q(+/d) lower bound for non-adaptive,
one-sided testers (this lower bound holds even for {0, 1}-ranged functions), which was improved to a
Q(d/¢€) lower bound by Briet et al. [8]. Using an ingenious reduction from communication complexity,
Blais, Brody and Matulef [4] proved an Q(d) lower bound for adaptive, two sided testers. Honing this
reduction, Brody [9] improved it to an Q(d/¢€) lower bound. For the hypergrid domain, the only lower
bound known was an Q(dlogn) for non-adaptive testers by Blais, Raskhodnikova, and Yaroslavtsev [5]
using communication complexity techniques.

THEORY OF COMPUTING, Volume 10 (17), 2014, pp. 453—464 454

http://dx.doi.org/10.4086/toc

AN OPTIMAL LOWER BOUND FOR MONOTONICITY TESTING OVER HYPERGRIDS

We note that our theorem only holds when the range is N, while some previous results hold for
restricted ranges. The results of [4, 9] provide lower bounds for range [\/Zz’} and that of Blais et al. [5]
hold for the range [nd]. For these settings, the communication complexity reductions provide stronger
lower bounds than our result.

1.2 Preliminaries and main ideas

We start with a formal definition of a tester. Consider the family of functions f : D — R, where D is some
partial order, and R C N. We assume that f always takes distinct values, so Vx,y, f(x) # f(y). Since we
are proving lower bounds, this is no loss of generality.

Definition 1.2. An algorithm A is a (¢, €, §)-monotonicity tester if A has the following properties. For
any f: D — R, the algorithm A makes ¢ (possibly randomized) queries to f and then outputs either
“accept” or “reject.” If f is monotone, then A accepts with probability > 1 — 3. If f is e-far from
monotone, then A rejects with probability > 1 — d.

Given a positive integer s, let D* be the s-fold Cartesian product of D. We define two symbols
acc and rej, and denote D’ = DU {acc,rej}. Any (7€, §)-tester can be completely specified by the
following family of functions. For all s <t, x € D*, y € D/, we consider a function py : R®* — [0,1],
with the semantics that for any a € R®, px(a) denotes the probability the tester queries y as the (s + 1)th
query, given that the first s queries are Xj,...,X; and f(x;) = a; for 1 <i <. These functions satisfy the
following properties.

Vs<t,VxeD’ VacR’, Y pi(a)=1, (1.1)
yep/
vxeD',VyeD,VaeR', pl(a)=0. (1.2)

(1.1) ensures the decisions of the tester at step (s + 1) must form a probability distribution. (1.2) implies
that the tester makes at most ¢ queries. Any adaptive tester can be specified by these functions. The
important point to note is that these are finitely many functions; their number is at most ¢|D|/*!.

The starting point of this work is the result of Fischer [14] who proved an adaptive lower bound for
monotonicity testing for functions f : [n] — N. He shows that adaptive testers can be reduced to what we
call comparison-based testers ([14] calls them order-based testers). In plain English, comparison-based
testers are adaptive testers whose decision on where to query at time s + 1 depends only on the order of
the function values at the s-query points so far, and not on the value themselves. Such a reduction is done
using Ramsey theory arguments, in turn inspired by the work of Breslauer et al. [7]. Our starting point is
an observation that Fischer’s proof goes through for every partial order, and not just the total order [n]. To
define comparison-based testers formally, we need some notation.

For any positive integer s, let R(*) denote the set of unordered subets of R of cardinality s. We
introduce new functions as follows. With each s, x € D, y € D', and each permutation o : [s| — [s], we
associate functions ¢ ¢ : R®) — [0, 1], with the semantics

Forany set S = (a] <ay < --- < a;) € RY, Ix,0(8) = pxlacy, - as(s)) -

THEORY OF COMPUTING, Volume 10 (17), 2014, pp. 453—464 455

http://dx.doi.org/10.4086/toc

DEEPARNAB CHAKRABARTY AND C. SESHADHRI

That is, gx o, (S) sorts the answers in S in increasing order, permutes them according to &, and passes
the permuted ordered tuple to px. These g-functions allow us to formally define comparison-based testers.

Definition 1.3. A monotonicity tester A is comparison-based for functions f : D — R if for all s,
x € D’,y € D', and permutations ¢ : [s] — [s], the function g} ; is a constant function on R%). In other
words, the (s+ 1)th decision of the tester given that the first s questions is X, depends only on the ordering
of the answers received, and not on the values of the answers.

It is not too hard to see that a comparison-based tester for the domain [n] can be easily converted to
a non-adaptive tester, for which an Q(logn) bound was previously known [13]. This is not true for the
hypergrid domain in general. To circumvent this, we first focus on the hypercube domain. As is standard,
we define a distribution over functions, one of which is monotone and the others €-far from monotone,
and show that any deterministic comparison-based tester making few queries cannot be correct most of
the time. Our monotone function is in fact the “decimal notation” of the binary vector which “mimics” a
total order from O to 2¢ — 1. This can now be used to argue that any comparison-based tester is essentially
non-adaptive for which a lower bound follows easily. Finally, for hypergrids, we give an easy reduction
to hypercubes.

2 The reduction to comparison-based testers

Theorem 2.1. Suppose there exists a (t,€,0)-monotonicity tester for functions f : D — N. Then there
exists a comparison-based (t,€,208)-monotonicity tester for functions f : D — N.

As stated in the previous section, the above theorem is implicit in the work of Fischer [14] who
proved it only for D = [n]. We provide a proof for completeness. Call a monotonicity tester discrete if the
corresponding functions py satisfying constraints (1.1), (1.2) can only take values in {i/K : 0 <i <K}
for some finite K.

Lemma 2.2. Suppose there exists a (t,€,8)-monotonicity tester A for functions f : D — N. Then there
exists a discrete (t,€,20)-monotonicity tester for such functions.

Proof. We do a rounding on the p-functions. Let K = 100¢|D|’/82. Start with the p-functions of the
(t,€,8)-tester A. Fory € DUacc, x € D¥, a € R, let py(a) be the largest value in {i/K | 0 <i < K}
which is at most p}(a). Set px>3 (a) so that (1.1) is maintained.

Note that for y € DU acc, if px(a) > 10¢/(6K), then

(1- 1) i) < @) < @),

Furthermore, p5* (a) > px*I(a).

The p-functions describe a new discrete tester A’ that makes at most # queries. We argue that A’ is a
(t,€,28)-tester. Given a function f that is either monotone or &-far from monotone, consider a sequence
of queries X = (x1,...,x;) after which A returns a correct decision p. Call such a sequence good, and let

THEORY OF COMPUTING, Volume 10 (17), 2014, pp. 453—464 456

http://dx.doi.org/10.4086/toc

AN OPTIMAL LOWER BOUND FOR MONOTONICITY TESTING OVER HYPERGRIDS

p(x) denote the probability this occurs. We know that the sum of p(x) over all good query sequences is
at least (1 —9). Now,

P(x) = P PR (00)) Py (FGen) fC)) bl (PG).

Here p™! is the probability that the first point queried is x;. Two cases arise. Suppose all of the multiplier
probabilities in the right-hand side above are > 10r/0K. Then, the probability of this good sequence
arising in A’ is at least (1 —8/10¢)' p(x) > p(x)(1 — 8/10). Otherwise, suppose some probability in
the right-hand side is < 10¢/8K; call such good sequences deficient. The total probability mass of
querying deficient good sequences is at most 10¢ /5K - [D|" < § /2. Therefore, the probability of querying
a good sequence in A’ is at least (1 —36/2)(1—3/10) > 1 — 238, where the first term is the mass on
non-deficient, good sequences for A. Therefore, A’ is a (7, €,20) tester. O

We introduce some Ramsey theory terminology. For any positive integer i, a finite coloring of NU) is a
function col; : N — {1,...,C} for some finite number C. An infinite set X C N is called monochromatic
with respect to col; if for all sets A,B € X(), col;(A) = col;(B). A k-wise finite coloring of N is a
collection of k colorings coly,...,col;. (Note that each coloring is over different sized tuples.) An
infinite set X C N is k-wise monochromatic if X is monochromatic with respect to all the col;s.

The following is a simple variant of Ramsey’s original theorem. (We closely follow the proof of
Ramsey’s theorem as given in Chap VI, Theorem 4 of [6].)

Theorem 2.3. For any k-wise finite coloring of N, there is an infinite k-wise monochromatic set X C N.

Proof. We proceed by induction on k. If k = 1, then this is trivially true since C is finite. We now iteratively
construct an infinite set of N. Let col;,colsy,...,col; be a k-coloring of N. Start with ag being the
minimum element in N. Consider the following (k — 1)-wise coloring of (N\ {ag}) col],...,col;_,
where col(S) is defined to be col;i(SUap). By the induction hypothesis, there exists an infinite
(k — 1)-wise monochromatic set Ao C N\ {ao} with respect to coloring col’s. That is, for 2 <i <k,
and any set S,T C Ay with |[S| = |T| =i — 1, we have col;(ayUS) = col;(apUT). Call this color C?.
Denote the collection of these colors as a vector Co = (CY,C9,...,CY) where C? = col(ap).
Subsequently, let | be the minimum element in Ay, and consider the (k — 1)-wise coloring col’ of
(Ao \ {a1}) where col}(S) = coliy1(SU{a;}) for S C Ag\ {a; }. Again, the induction hypothesis yields
an infinite (k — 1)-wise monochromatic set A; as before, and similarly the vector C;. Continuing this
procedure, we get an infinite sequence ag,aj, as, . .. of natural numbers, an infinite sequence of vectors of

k colors Cy, Cy,..., and an infinite nested sequence of infinite sets Ag D A; D A, Every A, contains
ag,Vs > r and by construction, any set ({a,} US), S C A,, S| =i — 1, has color C'. Since there are only
finitely many colors, some vector of colors occurs infinitely often as C,,,C,,,.... The corresponding
infinite sequence of elements a,,,ay,, ... is k-wise monochromatic. U

Proof of Theorem 2.1. Suppose there exists a (¢, €, §)-tester for functions f : D — N. We need to show
there is a comparison-based (7, €,28)-tester for such functions.

By Lemma 2.2, there is a discrete (,€,28)-tester A. Equivalently, we have the functions gy & as
described in the previous section. We now describe a 7-wise finite coloring of N. Consider s € [r]. Given
aset A C NG, col, (A) is a vector indexed by (y,x,0), where y € D, x € D*, and o is a permutation of

THEORY OF COMPUTING, Volume 10 (17), 2014, pp. 453—464 457

http://dx.doi.org/10.4086/toc

DEEPARNAB CHAKRABARTY AND C. SESHADHRI

s]. The value of the vector at this entry is defined to be gy 5(A). The domain is finite, so the number
of dimensions is finite. Since the tester is discrete, the number of possible colors entries is also finite.
Applying Theorem 2.3, we know the existence of a t-wise monochromatic infinite set R C N. By
the monochromatic property, we get that for any y,x, o, and any two sets A,B € R, s <, we have
¢x.c(A) = gx (B). That is, the algorithm A is a comparison-based tester for functions f : D — R.
Consider the strictly monotone map ¢ : N — R, where ¢ (b) is the bth element of R in sorted order.
Now given any function f : D — N, consider the function ¢ o f : D — R. Consider an algorithm A’
which on input f runs A on ¢ o f. More precisely, whenever A queries a point x, it gets answer ¢ o f(x).
Observe that if f is monotone (or &-far from monotone), then so is ¢ o f, and therefore, the algorithm A’
is a (r,€,20)-tester of ¢ o f. Since the range of ¢ o f is R, A’ is comparison-based. O

3 Lower bounds

We assume that 7 is a power of 2 and set ¢ := log, n, and think of [n] as {0, 1,...,n— 1}. For any integer
0 < z < n, we think of the binary representation of z as an ¢-bit vector (z1,22,...,z¢), where z; is the least
significant bit (although, z; is leftmost in the way written).

We first start with a map which allows us to reduce functions on hypergrids from those on hypercubes.
The map is the following natural one: ¢ : [n]? — {0,1}%‘. For any y = (v1,y2,...,y4) € [n]?, we
concatenate binary representations of the y;s in order to get a d¢-bit vector ¢ (¥). Hence, we can transform
a function f : {0,1}4 — N into a function f : [n]¢ — N by defining £ (¥) := f(9(7)).

In Section 3.1, we describe a distribution of functions over the hypercube with equal mass on
monotone and &-far from monotone functions. The key property is that for a function drawn from
this distribution, any deterministic comparison based algorithm errs in classifying it with non-trivial
probability. This property will be used in conjunction with the above mapping to get our final lower
bound Section 3.2.

3.1 The hard distribution

We focus on functions f: {0,1}" — N. (Eventually, we set m = d¢.) Given any x € {0,1}", we let

val(x) := Y, 2"~ !x; denote the number for which x is the binary representation. Here, x; denotes the
least significant bit of x.
For convenience, we let € be a power of 1/2. Fork € {1,...,1/2¢}, we let

Se:={x:val(x) € 2(k—1)e2" 2ke2" — 1]} .

Note that the sets S; partition the hypercube, with each |S;| = 2!, In fact, each S; is a subhypercube
of dimension m’ := m+ 1 —log(1/¢), with the minimal element having all zeros in the m’ least significant
bits, and the maximal element having all ones in those.

We describe a distribution J,, ¢ on functions. The support of F,, ¢ consists of f(x) = 2val(x) and
m' /(2€) functions indexed as g;; with j € [m'] and k € [1/(2¢)], defined as follows.

2val(x)—2/—1 ifx;=1andx € S,
8jk(x) =

2val(x) otherwise.

THEORY OF COMPUTING, Volume 10 (17), 2014, pp. 453—464 458

http://dx.doi.org/10.4086/toc

AN OPTIMAL LOWER BOUND FOR MONOTONICITY TESTING OVER HYPERGRIDS

The distribution J,, ¢ puts probability mass 1/2 on the function f = 2val and €/m’ on each of the
gjks. All these functions take distinct values on their domain. Note that 2val induces a total order on

{0,117,

The distinguishing problem: Given query access to a random function f from J, ¢, we want a
deterministic comparison-based algorithm that declares that f = 2val or f 7% 2val. We refer to any such
algorithm as a distinguisher. Naturally, we say that the distinguisher errs on f if its declaration is wrong.
We first prove a lower bound for non-adaptive distinguishers.

Lemma 3.1. Any deterministic, non-adaptive, comparison-based distinguisher A making fewer than
t <m'/(8€) queries, errs with probability at least 1/8.

Proof. Let X be the set of points queried by the distinguisher. Set X; = X N Sy; these form a partition
of X. We say that a pair of points (x,y) captures the (unique) coordinate j, if j is the largest coordinate
where x; # y;. (By largest coordinate, we refer to most significant bit.) For a set Y of points, we say Y
captures coordinate j if there is a pair in Y that captures j. The main technical argument is encapsulated
in the following two claims.

Claim 3.2. For any j,k, if the algorithm distinguishes between val and g; , then X; captures j.

Proof. 1f the algorithm distinguishes between val and g x, there must exist (x,y) € X such that val(x) <
val(y) and g;(x) > g; (). We claim that x and y capture j; this will also imply they lie in the same Sy
since the m — j most significant bit of x and y are the same.

Firstly, observe that we must have y; = 1 and x; = 0; otherwise,

8jk(y) — gjk(x) > 2(val(y) —val(x)) >0

contradicting the supposition. Now suppose (x,y) don’t capture j implying there exists i > j which is the
largest coordinate at which they differ. Since val(y) > val(x) we have y; = 1 and x; = 0. Therefore, we
have
gjk(y) —gjx(x) > 2(val(y) —val(x)) =2/ = 1> (2'+2/) =) 2'—2/~1>0.
1<r<i
So, x,y capture j and lie in the same Sy.. If K’ # k, then again g; x(y) — gjx(x) = 2(val(y) —val(x)) > 0.
Therefore, X; captures j. O

Claim 3.3. A set Y of points captures at most |Y| — 1 coordinates.

Proof. We apply induction on |Y|. When |Y| = 2, this is trivially true. Otherwise, pick the largest
coordinate j captured by Y and let Yo = {y:y; =0} and ¥; = {y : y; = 1}. By induction, Y; captures at
most |Yy| — 1 coordinates, and ¥; captures at most |Y;| — 1 coordinates. Pairs (x,y) € ¥y x ¥; only capture

coordinate j. Therefore, the total number of captured coordinates is at most

Yol =1+ V| —1+1=|¥|—1. O

THEORY OF COMPUTING, Volume 10 (17), 2014, pp. 453—464 459

http://dx.doi.org/10.4086/toc

DEEPARNAB CHAKRABARTY AND C. SESHADHRI

We now complete the proof of Lemma 3.1. If |X| < m'/8e, then there exist at least 1/4¢ values of
k such that |X;| < m'/2. By Claim 3.2 and Claim 3.3, each such X captures at most m’/2 coordinates.

Therefore, there exist at least

1 wm w

4e 2 8¢
functions g; x that are indistinguishable from the monotone function 2val to a comparison-based proce-
dure that queries X. This implies the distinguisher must err (make a mistake on either these g; s or 2val)

with probability at least
(e m 1 1 -
mn(—-—,-|=-.
m (8¢g)’ 2 8

A basic proposition reduces adaptive distinguishers to non-adaptive ones. This crucially uses the total
order given by val(x).

Proposition 3.4. Suppose there exists a deterministic comparison-based distinguisher A that makes at
most t queries for inputs drawn from distribution F,, ¢. Then there exists a deterministic non-adaptive
comparison-based distinguisher A" making at most t queries whose probability of error on inputs from
Fme 1s at most that of A.

Proof. We represent A as a comparison tree. For any path in A, the total number of distinct domain
points involved in comparisons is at most ¢. Note that 2val(x) is a total order, since for any x,y either
val(x) < val(y) or vice versa. We say that a comparison between f(x) and f(y) is inconsistent with val
if f(x) < f(y), val(x) > val(y) or vice versa. We construct a comparison tree A’ where we simply reject
whenever a comparison is inconsistent with the total order, and otherwise mimics A. The comparison tree
of A’ has an error probability at most that of A since it never errs when A doesn’t err. Furthermore, the
tree is just a path and thus can be modeled as a non-adaptive distinguisher as follows. We simply query
upfront all the points involving points on this path, and make the relevant comparisons for the output. [

Our main lemma is a direct consequence of Proposition 3.4 and Lemma 3.1.

Lemma 3.5. Any deterministic comparison-based distinguisher that makes less than m' / (8¢€) queries
errs with probability at least 1/8 on a function drawn from T .

3.2 The final bound

Recall, given function £ : {0,1}%’ — N, we have the function f : [n]¢ — N by defining f(¥) := f(¢()).
We start with the following observation.

Proposition 3.6. The function 2val is monotone and every g i is €/2-far from being monotone.

Proof. Let ii and V be elements in [n]¢ such that ii < V. We have val(¢(ii)) < val(¢(¥)), so 2val is
monotone. For the latter, it suffices to exhibit a matching of violated pairs of cardinality £2¢¢ for gj k- This
is given by pairs (i, V) where ¢ (i) and ¢ (V) only differ in their jth coordinate, and are both contained in
Sk. Note that these pairs are comparable in [1]¢ and are violations. O

THEORY OF COMPUTING, Volume 10 (17), 2014, pp. 453—464 460

http://dx.doi.org/10.4086/toc

AN OPTIMAL LOWER BOUND FOR MONOTONICITY TESTING OVER HYPERGRIDS

Theorem 3.7. Any (t,€/2,1/16)-monotonicity tester for f : [n]? — N, must have

. dlogn—1log(1/¢) .
- 8¢

Proof. By Theorem 2.1, it suffices to show this for comparison-based (¢,€/2,1/8) testers. By Yao’s
minimax lemma, it suffices to produce a distribution D over functions f : [n]¢ — N such that any
deterministic comparison-based (z,€/2,1/8)-monotonicity tester for D must have 7 > s, where

dlogn—1log(1/¢)
=
8¢

Consider the distribution D where we generate f from J,, ¢ and output f Suppose ¢ < s. By Proposi-
tion 3.6, the deterministic comparison based monotonicity tester acts as a deterministic comparison-based
distinguisher for J,, ¢ making fewer than s queries, contradicting Lemma 3.1. O

References

[1] NIR AILON AND BERNARD CHAZELLE: Information theory in property testing and monotonicity
testing in higher dimension. Inform. and Comput., 204(11):1704-1717, 2006. Preliminary version
in STACS’05 and ECCC. [doi:10.1016/].ic.2006.06.001] 454

[2] NIR AILON, BERNARD CHAZELLE, S. COMANDUR, AND DING L1U: Estimating the distance to a
monotone function. Random Structures Algorithms, 31(3):1704—1711, 2007. Preliminary version in
RANDOM’04. [doi:10.1002/rsa.20167] 454

[3] TUGKAN BATU, RONITT RUBINFELD, AND PATRICK WHITE: Fast approximate PCPs for multidi-
mensional bin-packing problems. Inform. and Comput., 196(1):42-56, 2005. Preliminary version
in APPROX’99. [d0i:10.1016/].ic.2004.10.001] 454

[4] ERIC BLAIS, JOSHUA BRODY, AND KEVIN MATULEF: Property testing lower bounds via commu-
nication complexity. Comput. Complexity, 21(2):311-358, 2012. Preliminary version in CCC’11
and ECCC. [doi:10.1007/s00037-012-0040-x] 454, 455

[5] ERIC BLAIS, SOFYA RASKHODNIKOVA, AND GRIGORY YAROSLAVTSEV: Lower bounds for test-
ing properties of functions on hypergrid domains. In Proc. 29th IEEE Conf. on Computational Com-
plexity (CCC’14), pp. 309-320, 2014. Preliminary version in ECCC. [doi:10.1109/CCC.2014.38]
454, 455

[6] BELA BOLLOBAS: Modern Graph Theory. Springer, 2000. 457

[71 DANY BRESLAUER, ARTUR CZUMAJ, DEVDATT P. DUBHASHI, AND FRIEDHELM MEYER AUF

DER HEIDE: Transforming comparison model lower bounds to the parallel-random-access-machine.
Inform. Process. Lett., 62(2):103-110, 1997. [doi:10.1016/S0020-0190(97)00032-X] 455

THEORY OF COMPUTING, Volume 10 (17), 2014, pp. 453—464 461

http://dx.doi.org/10.1007/978-3-540-31856-9_36
http://eccc.hpi-web.de/eccc-reports/2004/TR04-068/index.html
http://dx.doi.org/10.1016/j.ic.2006.06.001
http://dx.doi.org/10.1007/978-3-540-27821-4_21
http://dx.doi.org/10.1002/rsa.20167
http://dx.doi.org/10.1007/978-3-540-48413-4_25
http://dx.doi.org/10.1016/j.ic.2004.10.001
http://dx.doi.org/10.1109/CCC.2011.31
http://eccc.hpi-web.de/report/2011/045
http://dx.doi.org/10.1007/s00037-012-0040-x
http://eccc.hpi-web.de/report/2013/036
http://dx.doi.org/10.1109/CCC.2014.38
http://dx.doi.org/10.1016/S0020-0190(97)00032-X
http://dx.doi.org/10.4086/toc

(8]

(9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

DEEPARNAB CHAKRABARTY AND C. SESHADHRI

JoP BRIET, SOURAV CHAKRABORTY, DAVID GARCIA-SORIANO, AND ARJEH MATSLIAH:
Monotonicity testing and shortest-path routing on the cube. Combinatorica, 32(1):35-53, 2012.
Preliminary version in RANDOM’99 and ECCC. [doi:10.1007/s00493-012-2765-1] 454

JOSHUA BRODY: Personal communication, 2013. 454, 455

DEEPARNAB CHAKRABARTY AND C. SESHADHRI: Optimal bounds for monotonicity and Lips-
chitz testing over hypercubes and hypergrids. In Proc. 45th STOC, pp. 419-428. ACM Press, 2013.
Preliminary version in ECCC. [doi:10.1145/2488608.2488661] 454

DEEPARNAB CHAKRABARTY AND C. SESHADHRI: An optimal lower bound for monotonicity
testing over hypergrids. In Proc. 16th Internat. Workshop on Approximation Algorithms for Combi-
natorial Optimization Problems (APPROX’13), pp. 425-435, 2013. Preliminary version in ECCC.
[doi:10.1007/978-3-642-40328-6_30] 453

YEVGENIY DoDIS, ODED GOLDREICH, ERIC LEHMAN, SOFYA RASKHODNIKOVA, DANA RON,
AND ALEX SAMORODNITSKY: Improved testing algorithms for monotonicity. In Proc. 2nd Internat.
Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX’99),
pp- 97-108, 1999. Available at ACM-DL. Preliminary version in ECCC. 454

FUNDA ERGUN, SAMPATH KANNAN, RAvVI KUMAR, RONITT RUBINFELD, AND MAHESH
VISWANATHAN: Spot-checkers. J. Comput. System Sci., 60(3):717-751, 2000. Preliminary version
in STOC’98. [doi:10.1006/jcss.1999.1692] 454, 456

ELDAR FISCHER: On the strength of comparisons in property testing. Inform. and Comput.,
189(1):107-116, 2004. Preliminary version in ECCC. [doi:10.1016/.ic.2003.09.003] 454, 455, 456

ELDAR FISCHER, ERIC LEHMAN, ILAN NEWMAN, SOFYA RASKHODNIKOVA, RONITT RU-
BINFELD, AND ALEX SAMORODNITSKY: Monotonicity testing over general poset domains. In
Proceedings of the 34th Annual ACM Symposium on the Theory of Computing (STOC), pp. 474-483.
ACM Press, 2002. [doi:10.1145/509907.509977] 454

ODED GOLDREICH, SHAFI GOLDWASSER, ERIC LEHMAN, DANA RON, AND ALEX SAMOROD-
NITSKY: Testing monotonicity. Combinatorica, 20:301-337, 2000. Preliminary version in FOCS’98.
[doi:10.1007/s004930070011] 453, 454

ODED GOLDREICH, SHAFI GOLDWASSER, AND DANA RON: Property testing and its connection
to learning and approximation. J. ACM, 45(4):653-750, 1998. Preliminary version in FOCS’96 and
ECCC. [doi:10.1145/285055.285060] 453

SHIRLEY HALEVY AND EYAL KUSHILEVITZ: Testing monotonicity over graph prod-
ucts. Random Structures Algorithms, 33(1):44—67, 2008. Preliminary version in ICALP’04.
[doi:10.1002/rsa.20211] 454

ERIC LEHMAN AND DANA RON: On disjoint chains of subsets. J. Combin. Theory Ser. A,
94(2):399-404, 2001. [doi:10.1006/jcta.2000.3148] 454

THEORY OF COMPUTING, Volume 10 (17), 2014, pp. 453—464 462

http://dx.doi.org/10.1007/978-3-642-15369-3_35
http://eccc.hpi-web.de/report/2010/048
http://dx.doi.org/10.1007/s00493-012-2765-1
http://eccc.hpi-web.de/report/2012/030
http://dx.doi.org/10.1145/2488608.2488661
http://eccc.hpi-web.de/report/2013/062
http://dx.doi.org/10.1007/978-3-642-40328-6_30
http://dl.acm.org/citation.cfm?id=711560
http://eccc.hpi-web.de/eccc-reports/1999/TR99-017/index.html
http://doi.acm.org/10.1145/276698.276757
http://dx.doi.org/10.1006/jcss.1999.1692
http://eccc.hpi-web.de/eccc-reports/2001/TR01-008/index.html
http://dx.doi.org/10.1016/j.ic.2003.09.003
http://dx.doi.org/10.1145/509907.509977
http://dx.doi.org/10.1109/SFCS.1998.743493
http://dx.doi.org/10.1007/s004930070011
http://dx.doi.org/10.1109/SFCS.1996.548493
http://eccc.hpi-web.de/eccc-reports/1996/TR96-057/index.html
http://dx.doi.org/10.1145/285055.285060
http://dx.doi.org/10.1007/978-3-540-27836-8_61
http://dx.doi.org/10.1002/rsa.20211
http://dx.doi.org/10.1006/jcta.2000.3148
http://dx.doi.org/10.4086/toc

AN OPTIMAL LOWER BOUND FOR MONOTONICITY TESTING OVER HYPERGRIDS

[20] MICHAL PARNAS, DANA RON, AND RONITT RUBINFELD: Tolerant property testing and distance
approximation. J. Comput. System Sci., 6(72):1012—-1042, 2006. Preliminary vesion in ECCC.

[doi:10.1016/j.jcss.2006.03.002] 454

[21] RONITT RUBINFELD AND MADHU SUDAN: Robust characterization of polynomi-

als with applications to program testing. SIAM J. Comput., 25(2):647-668,
[doi:10.1137/S0097539793255151] 453

AUTHORS

Deeparnab Chakrabarty

Researcher

Microsoft Research

9 Lavelle Road, Bangalore, India, 560001

deeparnab@ gmail.com
http://research.microsoft.com/en-us/um/people/dechakr/

C. Seshadhri

Assistant Professor

Department of Computer Science
University of California, Santa Cruz
scomandu@ucsc.edu

csesha@gmail.com
https://users.soe.ucsc.edu/"sesh/

ABOUT THE AUTHORS

DEEPARNAB CHAKRABARTY received his B. Tech. from IIT Bombay in 2003 and Ph. D.
from Georgia Institute of Technology in 2008. His graduate adviser was Vijay V. Vazirani.

After stints at the universities of Waterloo and Pennsylvania, he crossed the pond again
to join Microsoft Research in Bangalore where he has been a researcher since 2011. He
is interested in understanding efficient algorithms using the lens of optimization and has
worked on approximation algorithms, property testing, and on algorithmic questions
arising in game theory and economics.

THEORY OF COMPUTING, Volume 10 (17), 2014, pp. 453—464

1996.

463

http://eccc.hpi-web.de/eccc-reports/2004/TR04-010/index.html
http://dx.doi.org/10.1016/j.jcss.2006.03.002
http://dx.doi.org/10.1137/S0097539793255151
http://research.microsoft.com/en-us/um/people/dechakr/
https://users.soe.ucsc.edu/~sesh/
http://www.cc.gatech.edu/~vazirani/
https://math.uwaterloo.ca/combinatorics-and-optimization/
http://www.cis.upenn.edu/index.php
http://en.wikipedia.org/wiki/The_Pond
http://dx.doi.org/10.4086/toc

DEEPARNAB CHAKRABARTY AND C. SESHADHRI

C. SESHADHRI (Seshadhri Comandur according to his passport, and Sesh according to his
friends) follows the common naming style of South India, the native land of his parents.
In three of his early papers, including one cited in this bibliography, his name appears
as S. Comandur. The interested reader is invited to consult the OAQ (Occasionally
Asked Questions) section of his website for more details. Sesh got his B. Tech. from IIT
Kanpur in 2003 and his Ph. D. from Princeton University in 2008. His Ph. D. advisor
was Bernard Chazelle. He spent two years at IBM Almaden, and in 2010 he became a
member of technical staff at Sandia National Laboratories, Livermore, California. In
2015 he joins the faculty of the University of California at Santa Cruz. This paper was
written during his time at Sandia. His research focuses on how random sampling can be
used for algorithms for massive inputs. In theory, this manifests itself as work in property
testing. In practice, this has led to research on algorithms for massive real-world graphs.
He is increasingly interested in algorithmics beyond the worst-case, and bridging the gap
between theory and practice for big data applications.

THEORY OF COMPUTING, Volume 10 (17), 2014, pp. 453—464 464

https://users.soe.ucsc.edu/~sesh/oaq.html
https://users.soe.ucsc.edu/~sesh/oaq.html
http://www.cs.princeton.edu/~chazelle/
http://dx.doi.org/10.4086/toc

	Introduction
	Previous work
	Preliminaries and main ideas

	The reduction to comparison-based testers
	Lower bounds
	The hard distribution
	The final bound

	References

