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Abstract: In this paper, we study the method of certifying polynomials for proving AC0[⊕]
circuit lower bounds. We use this method to show that Approximate Majority on n bits
cannot be computed by AC0[⊕] circuits of size n1+o(1). This implies a separation between
the power of AC0[⊕] circuits of near-linear size and uniform AC0[⊕] (and even AC0) circuits
of polynomial size. This also implies a separation between randomized AC0[⊕] circuits of
linear size and deterministic AC0[⊕] circuits of near-linear size.

Our proof using certifying polynomials extends the deterministic restrictions technique
of Chaudhuri and Radhakrishnan (STOC 1996), who showed that Approximate Majority
cannot be computed by AC0 circuits of size n1+o(1). At the technical level, we show that for
every AC0[⊕] circuit C of near-linear size, there is a low-degree polynomial P over F2 such
that the restriction of C to the support of P is constant.
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We also prove other results exploring various aspects of the power of certifying polyno-
mials. In the process, we show an essentially optimal lower bound of logΘ(d) s · log(1/ε) on
the degree of ε-error approximating polynomials for AC0[⊕] circuits of size s and depth d.

Finally, we use these ideas to give a compression algorithm for AC0[⊕] circuits, answering
an open question of Chen, Kabanets, Kolokolova, Shaltiel, and Zuckerman (Computational
Complexity 2015).

1 Introduction

In this paper, we study the method of certifying polynomials for proving circuit lower bounds. We begin
by describing the motivation for the main new circuit lower bound that we show, after which we will
elaborate on the the method itself, and finally we describe some other results exploring the power and
limitations of this method.

1.1 The size-hierarchy problem for AC0[⊕]

Our main result fits in the general theme of studying the relative power of constant-depth circuit classes.
We show a near-tight circuit lower bound for computing Approximate Majority with AND, OR, PARITY
and NOT gates. This is a first step in the direction of a uniform size-hierarchy theorem for such circuits,
which is a basic open question about this well-studied class of circuits.

We first fix some notation and conventions regarding circuits for the rest of this paper. AC0 denotes
the class of constant-depth circuits with unbounded fan-in AND, OR and NOT gates. AC0[⊕] denotes the
class of constant-depth circuits with unbounded fan-in AND, OR, PARITY and NOT gates. We measure
the size of a circuit by the number of gates.1 We use n to denote the number of input bits to a circuit.

There is a well-developed theory giving superpolynomial and even exponential (exp(nΩ(1))) lower
bounds for AC0 and AC0[⊕] circuits [14, 1, 34, 18, 24, 27]. Our focus in this paper is on complexity
theory within these classes.

An influential paper of Ragde and Wigderson [23] asked if uniform AC0 circuits of linear size are
strictly weaker than uniform AC0 circuits of polynomial size. This was answered by Chaudhuri and
Radhakrishnan [11], who showed that Approximate Majority functions do not have AC0 circuits of depth
d and near-linear size O(n1+εd ) (where εd > 0). An Approximate Majority function is any function which
maps strings of Hamming weight < n/4 to 0 and strings of Hamming weight > 3n/4 to 1. Such functions
were first considered by Ajtai and Ben-Or [2] in the context of AC0 for the purpose of error-reduction
for AC0 circuits. In [2], it was shown that Approximate Majority can be computed by polynomial-size
AC0 circuits, and later results of Ajtai [1] and Viola [31] showed that this can even be done by uniform
polynomial-size AC0 circuits of depth 3. (In fact these circuits can be made to have depth d and size
O(n1+εd ), where εd → 0 as d → ∞ [11].) This combined with the lower-bound of [11] showed the
conjectured separation of Ragde and Wigderson.

The proof method of [11] is especially interesting to us, and we will discuss their method and our
extension of it in the next subsection.

1It is also standard to use “size” to denote the number of wires in the circuit. Our lower bound results also hold for this
measure, since the number of gates lower bounds the number of wires up to a constant factor.
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A beautiful recent result of Rossman [26] shows a size-hierarchy for AC0: for every integer k > 0,
uniform depth-2 AC0 circuits of size O(nk) are more powerful than non-uniform AC0 circuits of size
O(nk/4) and any constant depth. A striking follow-up result of Amano [4] in fact shows that depth-2 size
O(nk) uniform AC0 circuits can be more powerful than size O(nk−ε) AC0 circuits for arbitrary ε > 0 and
any constant depth.

In this paper we study the analogous questions for uniform AC0[⊕]. Our main result is that Ap-
proximate Majority cannot be computed by AC0[⊕] circuits of near-linear size. In particular this means
that polynomial-size uniform AC0[⊕] circuits (and even polynomial-size uniform AC0 circuits) can be
more powerful than near-linear size AC0[⊕] circuits. Thus we make a first step towards a size-hierarchy
theorem for AC0[⊕] circuits, analogous to the result of Chaudhuri and Radhakrishnan for AC0. Our
result also shows that randomized AC0[⊕] circuits of linear size can be more powerful than deterministic
AC0[⊕] circuits of near-linear size.

Showing the full size-hierarchy for uniform AC0[⊕] is still open and would be very interesting. Even
the question of whether there exists a function that has uniform AC0[⊕] circuits of size nlogn but no
polynomial-size AC0[⊕] circuits (of possibly larger, but constant, depth) remains unanswered.

1.2 Towards a size-hierarchy using certifying polynomials for AC0[⊕]

The main component of the [11] lower bound for Approximate Majority is a structure theorem for AC0

circuits of near-linear size. It states that for every AC0 circuit C of near-linear size, there is a collection of
o(n) variables and and a setting of these variables (a {0,1}-assignment to them) that simplifies the circuit
C to a constant. Equivalently, there is a large axis-parallel subcube of {0,1}n on which C restricts to a
constant. This structure theorem immediately implies the lower bound on Approximate Majority.

The proof of this structure theorem is by “deterministic restrictions.” Going through the circuit in
a bottom-up fashion, one first finds a setting of a small number of variables that simplifies the circuit
to one where all the gates have small fan-in. The basic observation is that if one considers the gates at
height 1 that have large fan-in, then we can set a large number of them to constants by setting a few input
variables; continuing in this way, we eventually remove all large fan-in gates of height 1 (there can’t be
too many of them, since C is of near-linear size), setting only a few variables in doing so. We then move
on to higher levels and repeat the process, which now becomes feasible since setting gates of small fan-in
to a constant reduces to setting only a few variables to constants. Once all the gates have small fan-in, the
entire circuit is a function of only a few variables and hence, on setting these variables, say, to zero, the
circuit becomes a constant.

The main component of our lower bound is an analogous structure theorem for AC0[⊕]. Clearly, the
structure theorem for AC0 is false for even a single parity gate and hence for AC0[⊕]. However, here we
can show that for any AC0[⊕] circuit C of near-linear size, there is a polynomial of degree o(n) such that
C restricts to a constant on the support (i. e., non-zero set) of that polynomial. We call such a polynomial
a certifying polynomial for the circuit C; similar notions have appeared in the complexity theory literature
in works of Aspnes, Beigel, Furst and Rudich [7], Green [15], and Alekhnovich and Razborov [3] and
also in the context of cryptography in the work of Carlet, Dalai, Gupta, and Maitra [9].

The proof of this structure theorem again proceeds in a bottom-up fashion, but now, instead of
setting individual variables to constants, we set low-degree polynomials to constants, thus obtaining a
system of polynomial constraints. The polynomials are chosen carefully to ensure that on inputs from the
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(non-empty) solution set of these constraints, the circuit is equivalent to another circuit all of whose AND
and OR gates have small fan-in. Again, once all the AND and OR gates have small fan-in, it is easy to
see that the circuit just computes a low-degree polynomial, and thus setting this low-degree polynomial
to a constant simplifies the circuit to a constant.

Given this structure theorem, it remains to see that no Approximate Majority function has this
structure. This turns out to be a consequence of the general fact that a nonzero polynomial of degree d
cannot vanish at every point of a Hamming ball of radius d. (This follows from the fact that Hamming
balls are interpolating sets for polynomials.) We therefore conclude that an Approximate Majority
function cannot be constant on the zero set of a nonzero polynomial of degree < n/4. Combined with the
structure theorem, this completes the proof of the lower bound for the AC0[⊕] complexity of Approximate
Majority.

1.3 More applications of certifying polynomials

Having proved the lower bound, we then take a step back to re-examine the technique of proving lower
bounds via certifying polynomials.

Connection with the Razborov-Smolensky technique. On the face of it, it seems like this method
is somewhat distinct from the Razborov-Smolensky method [24, 28] used to prove lower bounds for
general AC0[⊕] circuits, which uses polynomial approximations to circuits. The Razborov-Smolensky
method gives global, approximate structure: it shows that for any AC0[⊕] circuit C of size M, there
is a polynomial of degree poly(log(M)) which agrees with C on most points of {0,1}n. Our structure
theorem, which only applies to circuits of near-linear size, gives local, exact structure: we get a perfect
description of the values taken by an AC0[⊕] circuit on a small but structured subset of {0,1}n.

As it turns out, however, the framework of certifying polynomials is quite robust. We demonstrate a
connection between polynomial approximations and certifying polynomials for circuits. We then use this
connection along with Razborov’s approximating polynomials to construct certifying polynomials for
general AC0[⊕] circuits. These polynomials have degree much larger than that obtained in our structure
theorem, but nevertheless, their degree is small enough to to permit to recover the exponential lower
bound obtained by Razborov [24] for AC0[⊕] circuits computing the Majority function. We stress that
most of the ideas of this lower-bound proof are already present in [24, 28], and the main aim of this
exercise is to show that the use of certifying polynomials is a unified framework that “explains” both our
approach and the standard Razborov approach to proving lower bounds for AC0[⊕].

In the course of this proof, we also construct improved approximations to AC0[⊕] circuits in the
small-error regime; to the best of our knowledge, such approximations were not known before. Further,
since the publication of a preliminary version of this paper [19], this result has been used in other work
(see below).

Lower bounds for polynomial approximations. We also exploit the connection between certifying
polynomials and polynomial approximations in the reverse direction to prove limits on the power of
polynomial approximations. We show that the low-error approximations we construct for AC0[⊕] are
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close to the best possible for all depths d ≥ 3. Once again, this demonstrates the usefulness of the
certifying polynomials framework.

Compression algorithms for AC0[⊕]. A recent paper of Chen et al. [12] introduced the Compression
problem for a class C of circuits, which is roughly defined to be the following algorithmic question. Given
the truth table of a function f that has a (small) circuit from the class C, the output of the algorithm should
be a non-trivially small Boolean circuit (not necessarily from C) computing the function f . The result of
Chen et al. [12] shows that this meta-algorithmic question has connections to proving lower bounds for
the class C of circuits. Such algorithms were also shown to exist for AC0 and some other circuit classes,
but the question of whether such an algorithm exists for AC0[⊕] was left open.

Intuitively, a low-degree certifying polynomial for a function f should be useful for this purpose since
it computes the function correctly on a certain subset of its inputs, and moreover, it can be computed
efficiently by solving a system of linear equations. If we could find “few” certifying polynomials that
together “cover” all the inputs of f , then we could use these to give a small circuit for f .

Indeed, we are able to do this by using a recent result due to Nie and Wang [21] regarding the Zariski
closure of polynomials over finite fields, thus resolving the question of Chen et al.

1.4 The use of our results in subsequent work

After a preliminary version of our results appeared in [19], our results, specifically the polynomial approx-
imations to AC0[⊕] in the low-error regime, have been used in the following other results. Williams [33]
uses it to design faster algorithms to solve 0-1 integer linear programs. Oliveira and Santhanam [22]
use a variant over the field Fp to prove lower bounds for AC0[p] compression protocols2 for the Major-
ity function. Recently, Harsha and the second author [17] used a variant over the reals to prove that
(logs)O(d) · log(1/ε)-wise independence ε-fools AC0 circuits of size s and depth d, improving upon
results of Braverman [8] and Tal [30].

2 Preliminaries

We begin by formally defining certifying polynomials. Throughout the paper, we identify {0,1} with F2.
Given a function f : {0,1}n→{0,1}, we use Supp( f ) to denote the set f−1(1).

Definition 2.1 (Certifying polynomial). A non-zero multilinear polynomial

P(X1, . . . ,Xn) ∈ F2[X1, . . . ,Xn]

is a certifying polynomial for a function f : {0,1}n → {0,1} if f is constant on the non-empty set
Supp(P)⊆ Fn

2.

This definition is very similar to the notions of weak-2 degree and algebraic immunity, that already
appear in the literature [15, 3, 9]. It is also similar in spirit to the notion of weak sign degree that appears
in the paper of Aspnes, Beigel, Furst, and Rudich [7].

2This is not the same as the algorithmic compression problem we consider in this paper. We refer the reader to [22] for
details regarding these protocols.
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We observe the following upper bound on the certifying polynomial degree of any Boolean function.

Lemma 2.2. Any f : {0,1}n→{0,1} has a certifying polynomial P of degree at most dn/2e.

Proof. Let N = ∑
dn/2e
i=0

(n
i

)
. Since N > 2n−1, we see that one among the sets f−1(0) and f−1(1) must

have size less than N. Without loss of generality, we assume that | f−1(0)| ≤ 2n−1. Consider the problem
of finding a non-zero polynomial P of degree at most dn/2e that vanishes over f−1(0). Finding the
coefficients of P amounts to finding a non-zero solution to a homogeneous system of linear equations
with N variables and | f−1(0)|< N constraints. By standard linear algebra, we know that there is a P as
required.

Lemma 2.2 is tight, for example, for the Majority function on n variables when n is odd (see
Section 4.2).

We now define Approximate Majority.

Definition 2.3 (Approximate Majority). An (a,n− a)-Approximate Majority is a Boolean function
f : {0,1}n→{0,1} such that the following holds.

• f (x) = 0 for every x of Hamming weight at most a.

• f (x) = 1 for every x of Hamming weight at least n−a.

If we omit the (a,n−a), we assume a = n/4.

We assume standard notions about circuit classes AC0,AC0[⊕],AC0[p] for prime p etc. (see, e. g., [6]).
The size of a circuit will always mean the number of gates in the circuit.3

Ajtai and Ben-Or [2] showed that for a≤ n/2−n/(logn)O(1), there exists an (a,n−a)-Approximate
Majority computable in AC0. We will use a uniform and more general version of this result, due to
Ajtai [1].

Theorem 2.4 (Ajtai [1]). For any n ∈ N, δ ∈ (0,1/2) and depth d ≥ 3, there exist ((1/2−δ )n,(1/2+
δ )n)-Approximate Majorities computable by uniform AC0 circuits of size 2(1/δ )O(1/d) ·nO(1) and depth d.

We also use the well-studied notion of approximating polynomials, introduced by Razborov [24].

Definition 2.5 (ε-error approximating polynomial). An ε-error approximating polynomial for a function
f is a polynomial P such that Prx∈{0,1}n [ f (x) = P(x)]≥ 1− ε .

We recall the notion of the Compression problem for a circuit class C from the result of Chen et
al. [12]. The input to the problem is the truth table of a Boolean function f : {0,1}n→{0,1} which is
promised to have a “small” circuit from the class C. The desired output is a general Boolean circuit C (not
necessarily from the class C) of small size that computes the function f ; the size of C should be smaller
than the trivial 2n/n that is achievable for any Boolean function. Moreover, we require the algorithm that
constructs C to run in time polynomial in the size of its input, which is in time poly(2n).

3There are two standard notions of size for a circuit, corresponding to the number of gates and to the number of wires in the
circuit. While these quantities are polynomially related, it matters which one we are dealing with in the near-linear regime, as in
the present paper. The lower bound on the number of gates we prove here implies a similar lower bound for the number of wires.
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The aforementioned paper of Chen et al. [12] that introduced this problem showed that there is a
polynomial-time compression algorithm for AC0 in the following sense: given as input the truth table of
f : {0,1}n→{0,1} which has an AC0 circuit of size s and depth d = O(1), the algorithm outputs a circuit
computing f of size at most 2n−n/(O(logs))d−1

. Similar compression algorithms were also obtained for
functions that have de Morgan formulas of size at most n2.5−Ω(1), Boolean formulas (over the complete
basis) of size n2−Ω(1) and read-once branching programs of size 2n(1/2−Ω(1)). We refer the reader to [12]
for the compression obtained in these cases.

3 Results

Our main lower bound result is the following.

Theorem 3.1. For every constant d ∈ N, there is an εd > 0 such that any depth-d AC0[⊕] circuit that
computes an Approximate Majority must have size Ω(n1+εd ).

By Theorem 2.4, this implies that uniform AC0 circuits of polynomial size can be more powerful than
linear-sized non-uniform AC0[⊕] circuits.

The proof of Theorem 3.1 yields εd = 1/2d+1. This is marginally better than the lower bound of
Ω(n1+1/4d

) obtained by Chaudhuri and Radhakrishnan [11] for the case of AC0. (The improvement is due
to a slightly different deterministic restriction method: whereas [11] try to remove both high fan-in and
high fan-out gates from the circuit, we handle only the high fan-in gates.) Also, as already showed by [11],
this lower bound cannot be substantially improved since Approximate Majorities can be computed by
AC0 circuits of depth d and size n1+1/2Ω(d)

.
The proof of Theorem 3.1 follows from the two lemmas below. The first one states that every function

with a near-linear AC0[⊕] circuit has a certifying polynomial of low degree. The next one states that an
Approximate Majority cannot have this property. The proofs of these lemmas appear in Section 4.

Lemma 3.2 (Near-linear-size AC0[⊕] circuits have low-degree certifying polynomials). For every con-
stant d ∈ N, there is an εd > 0 such that for every depth-d AC0[⊕] circuit C of size s ≤ n1+εd , C has a
certifying polynomial of degree o(n).

Lemma 3.3 (Approximate Majority does not have any low-degree certifying polynomials). For every
(a,n−a)-Approximate Majority f , there do not exist any certifying polynomials for f of degree ≤ a.

Next we state our results on certifying polynomials for general AC0[⊕] circuits. This result should
be contrasted with the fact that every function has a certifying polynomial of degree at most dn/2e
(Lemma 2.2).

Theorem 3.4. For every s > 0 and constant d > 0, every AC0[⊕] circuit C of size s and depth d has a
certifying polynomial of degree at most n/2−n/(logs)Θ(d).

We also show that this is essentially tight.

Lemma 3.5. For every s > nΩ(1), there exist AC0[⊕] circuits C on n input bits with size s, such that every
certifying polynomial for C has degree at least n/2−n/(logs)Θ(d).
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These results are proved in Section 5. The main ingredient in the proof of Theorem 3.4 is the following
strengthening of Razborov’s original theorem on approximating polynomials.

Lemma 3.6. There is an absolute constant c > 0 such that the following holds. For any ε ∈ (0,1/2),
any AC0[⊕] circuit C of size s and depth d has an ε-error approximating polynomial of degree at most
(c logs)d−1 · (log(1/ε)).

We also show in Section 5 how Theorem 3.4 gives an alternate proof of Razborov’s fundamental
result that Majority does not have subexponential-size AC0[⊕] circuits.

We also prove lower bounds for the degree of approximating polynomials for AC0[⊕] circuits, showing
the near-tightness of Lemma 3.6. The proof appears in Section 6.

Theorem 3.7. For every s,ε > 0, and every constant d ≥ 3, there exist AC0[⊕] circuits C of size s and
depth d such that for every polynomial P which is an ε-error approximating polynomial for C, we have

deg(P)≥
(

logs−O
(

log log
1
ε

))Θ(d)

· log
1
ε
.

Finally, we use certifying polynomials to give compression algorithms for AC0[⊕].
Theorem 3.8. There is a polynomial-time algorithm which, when given as input the truth table of a
function f : {0,1}n→{0,1} and parameters s and d = O(1) such that f has an AC0[⊕] circuit of size s
and depth d, outputs a circuit C of size 2n−n/(O(logs))2(d−1)

computing f .

4 Superlinear AC0[⊕] lower bounds for computing Approximate Major-
ity

In this section, we prove Lemma 3.2 and Lemma 3.3, thus completing the proof of Theorem 3.1.

4.1 Near-linear-size AC0[⊕] circuits have low-degree certifying polynomials

We now prove Lemma 3.2, restated below.

Lemma 3.2. (Restated from Section 3.) For every constant d ∈ N, there is an εd > 0 such that for every
depth-d AC0[⊕] circuit C of size s≤ n1+εd , C has a certifying polynomial of degree o(n).

We will actually construct a polynomial P such that P−1(0) is non-empty and C is constant on P−1(0).
The polynomial P′ = 1−P is then a certifying polynomial for C. (Recall that we are working over the
field F2.)

It will also be more convenient to work with a system of polynomials as opposed to a single
polynomial. Given a feasible system of polynomial equations in n variables, X1,X2, . . . ,Xn, say

p1(X) = 0 ,

p2(X) = 0 ,
...

pt(X) = 0 ,
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we define the degree of the system to be ∑
t
i=1 deg(pi). The set of solutions to this system is exactly the

set of roots of 1−∏
t
i=1(1− pi), which is a polynomial of degree at most ∑

t
i=1 deg(pi).

Given a feasible system P of polynomial equations, we denote by Sol(P) the non-empty set of
solutions of P. When P consists of a single polynomial p, we use Sol(p) instead of Sol(P). By a
restriction, we will mean simply a feasible system of polynomial equations.

Given a restriction P and a Boolean circuit C, we will denote by C|P the circuit C restricted to inputs
from Sol(P). We say a gate g of the circuit C is live under the restriction given by P if g takes values 0 as
well as 1 under inputs from Sol(P). Note that if a gate g is not live under a restriction, we can simplify
the circuit C to a smaller circuit C′ which computes the same function on the restricted inputs.

We say that a circuit C is live under the restriction P if every gate of C is live under P. The above
implies that, given any circuit C and restriction P, there exists a live circuit C′ of size at most the size of
C that computes the same function as C on inputs from Sol(P).

Proof of Lemma 3.2. The proof will proceed as follows. After restricting the given circuit C to the roots
of a well-chosen low-degree polynomial restriction P, we will obtain an equivalent circuit C′ that has the
property that each of the AND and OR gates of C′ have very small fan-in (say nε for ε � 1/d). At this
point, the entire circuit C′ computes a low-degree polynomial p and by setting p to a feasible value, we
finish the proof of the lemma.

Say we have an increasing sequence of numbers 1 < D1 < · · ·< Dd . (We will fix the exact values of
Di (i≥ 1) later.) We wish to obtain a restriction P under which C is equivalent to a circuit C′ which has
the property that every AND and OR gate at height i has fan-in at most Di. In particular, the circuit C′ is a
function of at most D1D2 · · ·Dd variables and hence is a polynomial of degree at most D1D2 · · ·Dd .

We proceed to construct a suitable restriction P in d steps. After the i-th step, we obtain a restriction
Pi under which there is a circuit Ci of size at most s for which the above fan-in bound holds for all heights
j ≤ i. Assuming that the (i−1)-st step has been completed, we describe how Step i is performed for
i≥ 1. (Note that nothing needs to be done for height 0.)

We assume that Ci is live. Otherwise, we can obtain and work with an equivalent circuit that is of
at most the size of Ci and satisfies the same fan-in restrictions as Ci. Let Bi denote the “bad” gates at
height i, that is, the AND and OR gates at height i that have fan-in at least Di. We use a basic subroutine
Fix(i,Ci) that simplifies the circuit Ci by augmenting the restriction Pi as follows.

The subroutine Fix(i,Ci). Since there are at least |Bi|Di wires between gates in Bi and lower levels (which
contain at most s gates), there is some gate g at height less than i that is adjacent to |Bi|Di/s gates. By the
fan-in restrictions on Ci, this gate computes a polynomial pg of degree at most D1 · · ·Di−1. (The empty
product in the case i = 1 is assumed to be 1.) Moreover, since the circuit Ci is live, this gate can be set to
both 0 and 1. We wish to add the restriction pg = 0 or pg−1 = 0 to Pi corresponding to setting the gate
to 0 or 1 respectively. Setting the gate g to 1 sets all the OR gates that g feeds into to 1 and setting g to 0
sets all the AND gates that g feeds into to 0. Hence, there is some setting that sets at least |Bi|Di/2s many
gates in Bi to constant. We set the gate g to this Boolean value.

Note that Fix(i,Ci) reduces the number of live bad gates to at most |Bi|(1−Di/2s). We are now
ready to describe Step i. Until the set of bad gates Bi is empty, we repeatedly call the subroutine Fix(i,C′i)
where C′i represents the circuit we currently have. After an application of the subroutine Fix(i,C′i) adds
another equation to our current restriction P′i , we fix the non-live gates and simplify the circuit until it
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becomes live again. (This process, of course, does not increase the fan-in of any gate.) Note that since
we are only setting live gates, the system of polynomial equations P′i we maintain is feasible. Moreover,
since the size of Bi is falling by a factor β ≤ (1−Di/2s) ∈ (0,1) after each application of Fix(i,C′i) and
|Bi| ≤ s≤ nO(1), we need to apply Fix(i,C′i) at most

2s log |Bi|
Di

= O(s logn/Di)

times to reduce Bi to the empty set.
Let us analyze the total degree of the equations added to the restriction during the i-th step. Each

equation added is a polynomial of degree at most D1D2 · · ·Di−1. Hence, the total degree of the added
equations is O(s lognD1D2 · · ·Di−1/Di).

At the end of Step d, we have a circuit Cd computing a polynomial of degree at most D′ = D1D2 · · ·Dd
that agrees with the original circuit C on a restriction of degree at most

D′′ = O(s logn)
(

1
D1

+
D1

D2
+

D1D2

D3
+ · · ·+ D1D2 · · ·Dd−1

Dd

)
.

We would like to set D1, . . . ,Dd such that both D′ and D′′ to be o(n). We will choose K and the
Di such that D1D2 · · ·Di−1/Di = K−1 for each i. This implies that Di = K2i−1

. Furthermore, we have
D′ ≤ K2d

and D′′ ≤ O(s logn/K).
Setting K = n1/(2d+1) and εd = 1/2d+1, we get D′ as well as D′′ are o(n) as long as s≤ n1+εd . Thus,

by setting the polynomial p computed by the circuit Cd to some feasible value, we obtain a restriction of
degree D′+D′′ = o(n) under which the circuit C becomes constant.

As mentioned above, this implies that there is a certifying polynomial for C of degree o(n).

4.2 Approximate Majority does not have any low-degree certifying polynomials

Lemma 3.3. (Restated from Section 3.) For every (a,n−a)-Approximate Majority f , there do not exist
any certifying polynomials for f of degree ≤ a.

Proof. Let p ∈ F2[X1, . . . ,Xn] be any non-zero multilinear polynomial of degree d ≤ a. We will show
that it cannot be that f is constant on Supp(p).

Our intermediate claim is that Supp(p) intersects every Hamming ball of radius a. By translating p if
necessary, we may assume that the Hamming ball is centered at the origin, and thus we seek to prove that
there is a point of Hamming weight at most a where p does not vanish.

Given the intermediate claim, it follows that there exist x0,x1 ∈ Fn
2 with p(x0) and p(x1) both non-zero

such that the Hamming weight of x0 is at most a, and the Hamming weight of x1 is at least n−a. Thus f
cannot be constant on Supp(p).

Now we prove the claim. Notice that since Supp(p) is nonempty, it is a non-zero polynomial. Assume
that

p(X1, . . . ,Xn) = ∑
S⊆[n]:|S|≤d

αS ∏
i∈S

Xi

where αS ∈ F2 for each S.
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Fix R ⊆ [n] such that αR 6= 0 but αS = 0 for all S ( R. Let x ∈ Fn
2 be the input with 1s at exactly

the indices in R. By our choice of R, for every monomial ∏i∈S Xi of degree at most d, either S = R and
hence ∏i∈S xi = 1; or αS = 0; or S * R and hence ∏i∈S xi = 0. Thus, we get that p(x) = αR 6= 0. Hence
x ∈ Supp(p).

Moreover, the Hamming weight of x is equal to the size of S which is at most deg(p)≤ a. Hence, we
see that Supp(p) does intersect the Hamming ball of radius a. This completes the proof of the claim, and
hence the proof of Lemma 3.3.

Remark 4.1. In particular, Lemma 3.3 implies that for odd n, any certifying polynomial for the Majority
function on n variables must have degree at least dn/2e, matching the bound given for arbitrary functions
in Lemma 2.2.

5 Certifying polynomials for general AC0[⊕] circuits

Given the results of the previous section, it makes sense to ask what are the lowest degree certifying
polynomials we can obtain for general (i. e., significantly larger than linear-sized) AC0[⊕] circuits. By
Lemma 2.2, we know that every function, irrespective of its complexity, has a certifying polynomial of
degree at most n/2 and as pointed out in Remark 4.1, this bound is tight for general functions. In this
section, we use Razborov’s approximations for AC0[⊕] circuits by probabilistic polynomials to derive
somewhat better certifying polynomials for functions with small AC0[⊕] circuits. In particular, we show
that polynomial-sized AC0[⊕] circuits have certifying polynomials of degree n/2−n/(logn)O(1).

Though this improvement over the trivial n/2 bound might seem small, the existence of such certifying
polynomials is quite powerful. We demonstrate this by showing how this fact, along with Lemma 3.3,
can be used to give a (slightly) conceptually different proof of Razborov’s result that Majority does not
have subexponential-size AC0[⊕] circuits. We note that the proof is essentially unchanged at a technical
level from the proofs of [24, 28], but the higher-order concepts involved seem curiously different. More
specifically, this proof is more reminiscent of the result of Aspnes et al. [7] in the context of AC0

augmented with a single threshold gate on top.
The main theorem of this section is the following.

Theorem 3.4. (Restated from Section 3.) For every s > 0 and constant d > 0, every AC0[⊕] circuit C of
size s and depth d has a certifying polynomial of degree at most n/2−n/(logs)Θ(d).

Theorem 3.4 shows that functions computed by small subexponential-size AC0[⊕] circuits have
certifying polynomials of non-trivially small degree.

We will need to use probabilistic polynomials in the proof.

Definition 5.1 (Probabilistic polynomials). An ε-error probabilistic polynomial of degree D for a function
f : {0,1}n→{0,1} is a random polynomial P of degree at most D (chosen according to some distribution
over polynomials of degree at most D) such that for any x ∈ {0,1}n, we have PrP[ f (x) = P(x)]≥ 1− ε .

Clearly, if a function f has an ε-error probabilistic polynomial P of degree D, then by the probabilistic
method, it has an ε-error approximating polynomial P of degree D as well.

We need the following well-known theorem, due to Razborov, on the existence of ε-error probabilistic
polynomials for AC0[⊕]. A gate of a circuit C is said to be internal if it is not a leaf.
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Theorem 5.2 (Razborov [24]). For any ε ∈ (0,1/2), any AC0[⊕] circuit C with at most s internal gates
and depth d ≥ 1 has an ε-error probabilistic polynomial of degree at most (log(s/ε))d . In particular, C
has an ε-error approximating polynomial of degree at most (log(s/ε))d .

Using Theorem 5.2 directly in our arguments would only give us a version of Theorem 3.4 with
weaker parameters. To obtain the parameters of Theorem 3.4, we need a strengthening of Theorem 5.2
that does better for small ε . The proof follows quite simply from Razborov’s cited result, although to the
best of our knowledge, this has not been observed in the literature.

Lemma 3.6. (Restated from Section 3 in a stronger form.) The following holds for the some absolute
constant c > 0. For any ε ∈ (0,1/2), any AC0[⊕] circuit C of size s and depth d has an ε-error
probabilistic polynomial of degree at most (c logs)d−1 · (log(1/ε)) for some absolute constant c > 0. In
particular, C has an ε-error approximating polynomial of degree at most (c logs)d−1 · (log(1/ε)).

Proof. Let C be an AC0[⊕] circuit of size s and depth d. Let g be the output gate of the circuit and
let C1, . . . ,Ck (k ≤ s) be the depth-(d− 1) subcircuits of C feeding into g. By Theorem 5.2, we know
that each Ci (i ∈ [k]) has a (1/10s)-error approximating polynomial Pi of degree at most (O(logs))d−1.
Also by Theorem 5.2, we know that the function computed by g has an AC0[⊕] circuit with just one
internal gate and hence has a (1/10)-error approximating polynomial P of degree O(1). The probabilistic
polynomial P′ := P(P1, . . . ,Pk) is a 1/5-error probabilistic polynomial for C, since for any x ∈ {0,1}n,

Pr
P′
[C(x) 6= P′(x)]≤ Pr

P1,...,Pk
[∃i ∈ [k] : Ci(x) 6= Pi(x)]+Pr

P
[g(C1(x), . . . ,Ck(x)) 6= P(C1(x), . . . ,Ck(x))]

≤ ∑
i∈[k]

Pr
Pi
[Ci(x) 6= Pi(x)]+Pr

P
[g(C1(x), . . . ,Ck(x)) 6= P(C1(x), . . . ,Ck(x))]

≤ k/10s+1/10≤ 1/10+1/10 = 1/5 .

Note that P′ has degree at most (O(logs))d−1. Let ` = c′ log(1/ε) for a constant c′ that we will
choose later in the proof. Let P′1, . . . ,P′` be ` independent copies of the probabilistic polynomial P′. Let Q
denote the probabilistic polynomial Maj(P′1, . . . ,P′`), where Maj is just the polynomial of degree at most
` that computes the majority of ` bits. Note that Q is of degree at most

deg(Maj) ·max
i

deg(P′i) = (O(logs))d−1 · `= (O(logs))d−1 · log(1/ε) .

We claim that Q is an ε-error probabilistic polynomial for C, which will finish the proof of the corollary.
For any input x ∈ {0,1}n, each P′j(x) predicts the value of C(x) correctly with probability 4/5. Now,

for Q(x) to predict C(x) incorrectly, a majority of the P′j ( j ∈ [`]) must predict the value of C(x) incorrectly
and by a Chernoff bound, the probability of this is bounded by exp(−Ω(`)), which is at most ε for a
large enough constant c′ > 0.

The next lemma shows that functions with low-degree ε-error approximating polynomials also have
low-degree certifying polynomials.
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Lemma 5.3. Suppose f : {0,1}n→ {0,1} has a degree D ε-error approximating polynomial. Then f
has a certifying polynomial of degree at most

n
2
− c1

√
n log

1
ε
+D ,

where c1 is an absolute constant.

Proof. Let P be the given ε-error approximating polynomial. Let S be the set of points where P differs
from f . We have |S| ≤ ε ·2n.

Let D0 be the smallest integer such that(
n
0

)
+

(
n
1

)
+ · · ·+

(
n

D0

)
> |S| .

By linear algebra, there is a non-zero polynomial Q of degree at most D0 that vanishes on S. Note that
one of Q ·P and Q · (1−P) is a non-zero polynomial. Moreover, for any input x ∈ Supp(Q), we have
P(x) = f (x).

Thus, it follows that one of Q ·P or Q · (1−P) is a certifying polynomial for f with degree at most
D0 +D (provided D0 +D < n; if not then the result is vacuously true). To finish the proof, we note that
by standard binomial estimates,

D0 ≤
n
2
− c1

√
n log

1
ε
.

(See, e. g., [22, Section B, Lemma 2.4].)

Proof of Theorem 3.4. Combining Lemma 3.6 and Lemma 5.3, we conclude that for every ε > 0. C has
a certifying polynomial of degree at most

n
2
− c1

√
n · log

1
ε
+(c2 logs)d−1 · log(1/ε) ,

where c1,c2 > 0 are absolute constants. In particular, setting ε = exp(−n/(logs)Θ(d)), we get that C has
a certifying polynomial of degree at most n/2−n/(logs)Θ(d).

Combining Theorem 3.4 with Lemma 3.3 (and using the fact that Majority is an (n/2−1,n/2+1)-
Approximate Majority), we get an alternate proof of the fact that Majority cannot be computed by AC0[⊕]
circuits of size smaller than exp(nΩ(1/d)).

Finally, we show that the bound of Theorem 3.4 is essentially tight.

Lemma 5.4. (Restated from Section 3.) For every s > nΩ(1), there exist AC0[⊕] circuits C on n input bits
with size s, such that every certifying polynomial for C has degree at least n/2−n/(logs)Θ(d).

Proof. Let δ be a parameter to be specified later. Let C be the AC0[⊕] circuit for ((1/2−δ )n,(1/2+δ )n)-
Approximate Majority given by Theorem 2.4. Then we have

|C|= 2(1/δ )O(1/d)
·nO(1) .
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We choose δ so that |C|= s; this gives δ = 1/(logs− c logn)Ω(d).
By Lemma 3.3, any certifying polynomial for C has degree at least

n ·
(

1
2
−δ

)
=

n
2
− n

(logs)Θ(d)
.

6 Lower bounds for approximating polynomials

We now use the tools of the previous two sections to show near-optimal lower bounds on the degree
of approximating polynomials for AC0[⊕] circuits. It is a folklore fact that ε-error approximations for
AC0[⊕] circuits of size s and depth d are required to have degree at least max{(logs)Ω(d), log(1/ε)}. In
this section, we show a stronger lower bound of Θ((logs)Ω(d) · log(1/ε)), which essentially matches the
upper bound obtained in Lemma 3.6. Our lower bound example is just a suitable Approximate Majority
and thus holds even for AC0 circuits.

We prove the lower bound by exploiting Lemma 5.3 in the contrapositive. Since there are Approximate
Majorities that are efficiently computable in AC0, by Lemma 3.3, we know that AC0 circuits can compute
functions that do not have efficient certifying polynomials. We can then use Lemma 5.3 to infer a lower
bound on the degree of ε-error approximations to AC0 circuits.

Theorem 3.7. (Restated from Section 3.) For every s,ε > 0, and every constant d ≥ 3, there exist AC0[⊕]
circuits C of size s and depth d such that for every polynomial P which is an ε-error approximating
polynomial for C, we have

deg(P)≥
(

logs−O
(

log log
1
ε

))Θ(d)

· log
1
ε
.

Proof. Let δ and m be parameters (to be specified later). Let C be an AC0[⊕] circuit on m inputs which
computes a ((1/2−δ )m,(1/2+δ )m)-Approximate Majority. By Theorem 2.4, such an AC0 circuit can
be taken to have depth d and size at most 2(1/δ )O(1/d)

·mO(1). We will choose m and δ so that this size
equals s.

Suppose P is an ε-error approximating polynomial for C with degree D. By Lemma 5.3, there is a
degree

m
2
− c1

√
m log

1
ε
+D

polynomial Q which is a certifying polynomial for C.
But since C is a ((1/2− δ )m,(1/2+ δ )m)-Approximate Majority, Lemma 3.3 tells us that that

deg(Q)≥ (1/2−δ ) ·m.
Putting this together, we get that

D≥ c1

√
m log

1
ε
−δ ·m .

We now choose m,δ suitably so that we get the claimed lower bound on D in terms of s and ε . We
set m,δ so that

c1

√
m log

1
ε
= 2δ ·m , (6.1)
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and so that s is the size of the circuit C. That is,

s = 2(1/δ )O( 1
d )︸ ︷︷ ︸

A

·mO(1)︸ ︷︷ ︸
B

. (6.2)

Note that from (6.1), we get

m = Θ

(
log 1

ε

δ 2

)
. (6.3)

We claim that

m≥
(

logs− c2 log log
1
ε

)Θ(d)

· log
1
ε
. (6.4)

for a suitably large absolute constant c2 > 0 defined later. Observe that this bound is trivial if logs ≤
c2 log log1/ε and thus we may assume that c2 log log1/ε < logs.

To prove (6.4), note that if s≤ A2, then we have 1/δ = (logs)Ω(d) and in this case (6.4) follows from
(6.3).

Otherwise, we see that s≤ B2 ≤ mO(1). In this case, note that if log(1/ε)≤
√

m, then by (6.3), we
have 1/δ = mΩ(1) and hence by (6.2), s≥ 2mΩ(1/d)

which contradicts our upper bound of s≤mO(1). Hence,
we must have log(1/ε)>

√
m.

Since s≤ mO(1) and log(1/ε)>
√

m, we must have log(1/ε)> sΩ(1), which contradicts the assump-
tion that c2 log log1/ε < logs for a large enough constant c2.

We have thus proved (6.4). From the lower bound on D obtained above, we get

D≥ c1

√
m log

1
ε
−δ ·m≥

c1

√
m log 1

ε

2
≥
(

logs−O
(

log log
1
ε

))Θ(d)

· log
1
ε
,

as desired.

7 Compression algorithms for AC0[⊕] circuits

In this section, we use certifying polynomials to obtain compression algorithms for AC0[⊕]. We devise
a deterministic polynomial-time algorithm which, when given as input the truth table of a function
f : {0,1}n→{0,1} that has an AC0[⊕] circuit of size s outputs a circuit of size 2n−n/polylog(s) computing
f .

Our starting point is the proof of Theorem 3.4 which shows that the input function f has a certifying
polynomial of degree at most D = (n/2)−O(n/(logs)2(d−1)). Let ε = exp(−n/(c logs)2(d−1)) for a
constant c > 0 yet to be chosen. To construct such a certifying polynomial, we start with a polynomial P
of degree at most d = (c2 logs)d−1 · log(1/ε) that computes f on all but an ε fraction of inputs. Let EP

be the set of inputs where P does not compute f correctly. We then construct a non-zero polynomial Q of
degree D0 = (n/2)− c1

√
n log(1/ε) that vanishes on EP: in the proof of Theorem 3.4, D0 is chosen so

that the number of monomials of degree at most D0 is greater than ε ·2n ≥ |EP|, which implies that there
is a non-zero Q vanishing on EP; the polynomial Q ·P or the polynomial Q · (1−P) is then a certifying
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polynomial for f of degree at most D0 +d. Let us further assume that Q ·P is non-zero, and is hence a
1-certifying polynomial for f (i. e., f (x) = 1 for all x in the support of the certifying polynomial).

Note that this idea also gives us an efficient algorithm for constructing such a certifying polynomial.
Formally, given the truth table of f , we can efficiently find a certifying polynomial for f of degree at
most D0 + d, since the problem of finding a 1-certifying polynomial for f is equivalent to finding a
non-zero solution to a system of homogeneous linear equations over F2 where the variables correspond to
coefficients of monomials of degree at most D0 +d.

The foregoing discussion gives us a hint of how to go about compressing the function f . We can
try to find a 1-certifying polynomial for f of degree at most D0 + d. Note that (for a suitable choice
of c) the number of monomials in such a polynomial is 2n−n/(logs)O(d)

, and hence this polynomial can
be represented as a depth-2 AC0[⊕] circuit of this size (alternately, since the Parity function on m bits
has a an circuit over the de Morgan basis of size O(m) [32, Theorem 4.1], we can also represent this
polynomial as a circuit over the de Morgan basis of size 2n−n/(logs)O(d)

). Hence, the certifying polynomial
gives us a “small” circuit that computes f correctly on a certain subset of inputs (and in particular is never
wrong on inputs of f−1(0)).

However, we are looking for a small circuit that computes f everywhere. To obtain such a circuit, we
try to look for many 1-certifying polynomials R1, . . . ,Rm and try to cover all the 1-inputs of f . If we are
able to do this with a small m, then

∨m
i=1 Ri computes the function f . There are two things that could go

wrong with such an approach.

• Each 1-certifying polynomial R is forced to vanish at all inputs x ∈ f−1(0). However, this could
also force R to vanish at some inputs y ∈ f−1(1). Such forced inputs y cannot be covered by any
1-certifying polynomial R.

• Each 1-certifying polynomial R that we find might cover very few y ∈ f−1(1) and hence we might
require many 1-certifying polynomials to cover all of f−1(1).

Handling the second of these issues is not too difficult, since we can use a simple linear algebraic
argument to show that for each y that is not forced in the above sense, a significant fraction of 1-certifying
polynomials cover y. Coupled with a covering argument from [12], we can show that there are a few
certifying polynomials that cover all such y.

To get around the first issue, we use a recent result of Nie and Wang [21], which implies that the
number of forced y is vanishingly small if the parameters are chosen carefully. We are therefore able to
hardcode these y into our circuit without a significant blowup in size. This finishes the proof.

We now state the result of Nie and Wang that we will use. Given a subset E⊆ {0,1}n and a parameter
D≤ n, we define the degree D closure of E, denoted clD(EP), which is the set of all points y ∈ {0,1}n

such that any polynomial Q of degree at most D1 that vanishes on EP vanishes on y.

Theorem 7.1 (Theorem 5.6 in [21]). Let ND denote the number of multilinear monomials of degree at
most D. Then, we have

|clD(E)|
2n ≤ |E|

ND
.
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This is actually a slight restatement of the result of Nie and Wang [21], who consider the closure of
subsets of Fn (instead of {0,1}n) where F is an arbitrary finite field. Over the field F2, this is the same as
the result of [21], but it also holds over any field in the form stated above. The proof is a straightforward
modification of the proof in [21] and is explicitly observed in [21] in the remarks following the proof of
Theorem 5.6. For completeness, we give a proof sketch of the theorem (over any field F) in Appendix A.

We now prove Theorem 3.8.

Theorem 3.8. (Restated from Section 3.) There is a polynomial-time algorithm which, when given as
input the truth table of a function f : {0,1}n→{0,1} and parameters s and d = O(1) such that f has an
AC0[⊕] circuit of size s and depth d, outputs a circuit C of size 2n−n/(O(logs))2(d−1)

computing f .

Proof. We assume that d and ε are as above. The constant c > 0 in the definition of ε > 0 will be chosen
below. We will assume that for the c we choose, the quantity (c logs)2(d−1) < n/100: otherwise, the
compression algorithm can just output a trivial circuit of size 2n/n for f .

Let D1 = (n/2)− c3
√

n log(1/ε) for a constant c3 > 0 that is chosen to so that the number of
monomials of degree at most D1 is ND1 ≥

√
ε2n. (See, e. g., [22, Section B, Lemma 2.4].) We choose c

so that D′ = D1 +d = n/2−n/(O(logs))(d−1).
We call y ∈ f−1(1) forced if any polynomial R that vanishes on f−1(0) also vanishes on y. Let

F ⊆ f−1(1) be the set of all forced y. We will prove the following two claims.

Claim 7.2. |F | ≤ 2n−n/(O(logs))2(d−1)
.

Claim 7.3. There is a polynomial-time algorithm A1 which when given f , outputs the descriptions of at
most m = O(n) 1-certifying polynomials R1, . . . ,Rm such that for each y ∈ f−1(1)\F, there is an i ∈ [m]
such that y ∈ Supp(Ri).

Given Claims 7.2 and 7.3, the description of the compression algorithm A is as follows. First run A1
and obtain a collection of 1-certifying polynomials R1, . . . ,Rm such that⋃

i

Supp(Ri) = f−1(y)\F .

In particular, if Ci is a circuit of size 2n−n/(O(logs))2(d−1)
that accepts exactly the inputs in Supp(Ri), then

C′ =
∨

iCi is a circuit of the required size that accepts exactly the set f−1(y) \F . The algorithm now
constructs a DNF CF of size O(n · |F |) that accepts exactly the inputs in F . (The set F is easily inferred
from the circuit C′.) The circuit C output by the algorithm is C′∨CF , which computes f by definition and
also has the required size.

It remains to prove Claims 7.2 and 7.3, which we do below.

Proof of Claim 7.2. Let P and EP be as above. Note that if y 6∈ clD1(EP), then there is a polynomial Q
of degree at most D1 that vanishes at all points in EP but not at y. Hence, the polynomial Q ·P is a
1-certifying polynomial for f of degree at most D′ that is non-zero at y and thus, y is not forced. Stated in
the contrapositive, this argument tells us that F ⊆ clD1(EP) and therefore, |F | ≤ |clD1(EP)|.

By Theorem 5.6 of Nie and Wang [21], we have

|clD1(EP)|
2n ≤ |EP|

ND1

.
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Since |EP| ≤ ε2n and ND1 ≥
√

ε2n, we see that the right hand size of the above inequality is bounded
by
√

ε , which implies the claim.

Proof of Claim 7.3. Let V denote the vector space of polynomials Q of degree at most D′ such that
Q vanishes on f−1(0). Note that F ′ := f−1(1) \F satisfies F ′ =

⋃
Q∈V Supp(Q). Let Q1, . . . ,QN be a

generating set of V . Note that N ≤ 2n. A generic element of V is given by ∑
N
i=1 αiQi for some choice of

α1, . . . ,αN ∈ F2; we denote this element by Qα , where α denotes the vector (α1, . . . ,αN).
For any y ∈ F ′, we have Qα(y) = ∑i αiQi(y), which is a linear function of α . Since y ∈ F ′, it is not

forced to 0 and hence not all the Qi(y) are 0. Thus, for a random choice of the αi, the probability that
Qα(y) 6= 0 is 1/2. We can derandomize this argument using binary error-correcting codes.

Say we have vectors U = {u1, . . . ,uN} ⊆ FM
2 (where M = 2O(n)) that generate an error-correcting

code of distance δM for some constant δ > 0. There are many standard constructions of such sets U
in time poly(2n). (See, e. g., [16, Chapter 9].) Let M be an M×N matrix with columns u1, . . . ,uN . Let
α

1, . . . ,αM denote the rows of M. For any non-zero β1, . . . ,βN we know that u = ∑i βiui has at least δM
many non-zero entries. In other words, for any non-zero vector β = (β1, . . . ,βN) ∈ FN

2 and a random
j ∈ [M], the probability that the inner product of β and α

j is non-zero is at least δ .
We are now ready to describe the algorithm A1. The algorithm needs to finds m = O(n) elements

R1, . . . ,Rm from V such that F ′ ⊆
⋃

i Supp(Ri). The algorithm goes through m iterations, the i-th iteration
producing a polynomial Ri ∈V . After each iteration, we ensure that the number of elements in F ′ left
uncovered thus far drops by the constant factor (1−δ ); thus, at the end of m = 2n/δ iterations, all the
elements of F ′ will be covered.

Let F ′i = F ′ \
⋃

p<i Supp(Rp) be the set of elements of F ′ left uncovered after i−1 iterations. In the
i-th iteration, the algorithm looks at each of the rows of M and picks the j such that

s j =

∣∣∣∣∣Supp

(
∑

i∈[N]

α
j
i Qi

)
∩F ′i

∣∣∣∣∣
is maximized. We know that vy := (Q1(y), . . . ,QN(y)) is a non-zero vector for any choice of y ∈ F ′i .
Hence, for a random j ∈ [M], the probability that the inner product of α

j and v is non-zero is at least δ .
By averaging, there must be a j ∈ [M] such that the inner product of α

j and vy is non-zero for at least a
δ -fraction of the y ∈ F ′i . Thus, |F ′i+1| ≤ (1−δ )|F ′i |.

Remark 7.4. After a manuscript version of this compression algorithm appeared in [29], a beautiful result
of Carmosino, Impagliazzo, Kabanets, and Kolokolova [10] gave a different randomized compression
algorithm for the class of AC0[⊕]. The algorithm from [10] is very different from our own and uses in
principle only the fact that the lower bounds we have for AC0[⊕] are based on natural strategies in the
sense of Razborov and Rudich [25]. Our algorithm, though specific to the case of AC0[⊕] (and AC0[p],
see below), is quantitatively stronger and is in addition deterministic.
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8 Extension to the MODp case

All the results we have proved extend fairly straightforwardly to the setting of AC0[p] circuits where p is
a prime. (Some such extensions have already appeared in the literature: Oliveira and Santhanam [22]
note that the proof of Lemma 3.6 regarding approximating polynomials extends to the MODp setting.)
The right definition of certifying polynomials is obtained by simply replacing F2 by Fp in Definition 2.1
(where Supp(P) is the set of points x s. t. P(x) 6= 0). Finally, for the Compression algorithm, we need a
modification of Theorem 7.1 for the case of Fp. This does not follow immediately from the results in the
paper of Nie and Wang [21], since they prove such a result only for the degree D closure over the entire
field Fp and not {0,1}n ⊆ Fn

p. However, as observed by Nie and Wang and also stated in Section 7, a
straightforward modification of their argument gives the result for closure over {0,1}n ⊆ Fn, where F can
be any field (possibly even infinite). A proof of this is given in Appendix A.

9 Discussion and open questions

We have seen that certifying polynomials are a natural and useful notion in the context of lower bounds
for AC0[⊕] circuits. We also saw that they have a rather interesting interaction with the well-studied
notion of approximating polynomials for AC0[⊕] circuits.

The fundamental question we would like to answer is whether we can prove a size-hierarchy theorem
for AC0[⊕] analogous to the results of Rossman [26] and Amano [4] for AC0. It would even be interesting
to obtain the weaker separation of uniform AC0[⊕] circuits of size nlogn from polynomial-sized AC0[⊕]
circuits. Good candidates for proving these separations seem to be the parity of the number of k-cliques
in a graph for the former, and the elementary symmetric polynomial of degree logn for the latter. We
have taken the first step in this direction by demonstrating a function that has polynomial-sized uniform
AC0 circuits but not near-linear sized AC0[⊕] circuits.

It would also be interesting to see whether certifying objects (analogous to the certifying polynomials
studied here) exist for other, more powerful, circuit classes, and if they can be used to prove new circuit
lower bounds and give new compression algorithms.
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A Appendix: A version of Theorem 7.1 over other fields

In this section, let F be an arbitrary field and n any positive integer. Consider the vector space Vn of
functions { f : {0,1}n → F}. It is a standard fact that any f ∈ Vn can be represented uniquely as a
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multilinear polynomial P ∈ F[X1, . . . ,Xn].
Given S⊆ {0,1}n and a degree parameter D ∈ N, we define clD(S) be the set of all y ∈ {0,1}n such

that any multilinear polynomial P ∈ F[X1, . . . ,Xn] of degree at most D that vanishes at all the points in S
also vanishes at y.

Our aim is to give a sketch of the following theorem. The theorem closely follows the proof of Nie
and Wang [21, Theorem 5.6]. This was already observed for a more general setting in [21] but we give
the proof here for the reader’s convenience.

Theorem A.1. Let ND denote the number of multilinear monomials of degree at most D. Then, we have

|clD(S)|
2n ≤ |S|

ND
.

To prove Theorem A.1, we will need some preliminary definitions and facts. Fix any S⊆ {0,1}n and
any multilinear polynomial P ∈ F[X1, . . . ,Xn]. We define PS : S→ F to be the evaluation vector of P at
all the points in S. Let VD(S) be the vector space {PS | P of degree at most D}. Define HD(S) to be the
dimension of VD(S). Let V (S) be the vector space of all functions { f : S→ F}.

Treating multilinear monomials as sets of variables, we can order them in the graded-lexicographic
order. (See, e. g., [13].) That is, ∏i∈A Xi ≤ ∏ j∈B X j if either |A| < |B| or if |A| = |B| and the smallest
i ∈ A4 B lies in A.

We recall some standard facts. The proofs can be found, e. g., in [28, 13].

Fact A.2.

1. As vector spaces, V (S)∼= F[X1, . . . ,Xn]/I(S) where I(S) is the ideal of all polynomials that vanish
at all the points in S.

2. dim(V (S)) = |S|.

3. For a set P⊆ F[X1, . . . ,Xn], let PD be the subset of all polynomials in P of degree at most D. Then,
as vector spaces VD(S)∼= F[X1, . . . ,Xn]D/I(S)D.

4. (Macaulay’s theorem [20]. Also see [28, Theorem 1].) For a multilinear polynomial P, let in(P)
denote its leading term with respect to the graded-lexicographic order. Let in(I(S)) denote the
set of all multilinear monomials that are leading terms of some polynomial in I(S) and out(I(S))
denote the space of all multilinear monomials that are not members of in(I(S)). Then, any f ∈V (S)
can be represented uniquely as a linear combination of monomials in out(I(S)) and similarly any
P ∈VD(S) can be represented uniquely as a linear combination of monomials in out(I(S))D. In
particular, |S|= dim(V (S)) = |out(S)| and HD(S) = dim(V (S)D) = |out(S)D|.

5. in(I(S)) is an up-set (i. e., ∏i∈A Xi ∈ in(I(S)) and A ⊆ B ⊆ [n] implies that ∏i∈B Xi ∈ in(I(S))).
Consequently, out(I(S)) is a down-set.

Finally, we use the following combinatorial lemma that is a simple restatement of Kleitman’s
lemma [5, Theorem 6.1.3].
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Lemma A.3 (Theorem 6.1.3 in [5]). Let A,B⊆ 2[n] be any down-sets. Then

|A|
2n ≤

|A∩B|
|B|

.

Lemma A.3 has a nice algebraic corollary.

Corollary A.4. Fix any T ⊆ {0,1}n. Then

|T |
2n ≤

HD(T )
ND

.

Proof. We apply Lemma A.3 with A = out(I(T )) (which is a down-set by Fact A.2) and B = {A ⊆
[n] | |A| ≤D}. Since |out(I(T ))|= |T | and |out(I(T ))D|= HD(T ) by Fact A.2, and also |B|= ∑

D
i=0
(n

i

)
=

ND, Lemma A.3 immediately implies the statement of the corollary.

We now prove the main theorem of this section.

Proof of Theorem A.1. Say T = clD(S). Note that T ⊇ S.
We know that any polynomial of degree at most D that vanishes on S must also vanish on T .

Equivalently, the linear map ρ : VD(T )→VD(S) obtained by restricting each polynomial PT to points in S
has trivial kernel and is hence injective.

Thus, HD(T ) = dim(VD(T ))≤ dim(VD(S))≤ dim(V (S)) = |S|. Applying Corollary A.4, we get

|T |
2n ≤

|S|
ND

,

which is the statement of the theorem.
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