
THEORY OF COMPUTING, Volume 14 (15), 2018, pp. 1–24
www.theoryofcomputing.org

Quantum-Walk Speedup of
Backtracking Algorithms

Ashley Montanaro∗

Received December 2, 2016; Revised May 4, 2017; Published December 3, 2018

Abstract: We describe a general method to obtain quantum speedups of classical algorithms
which are based on the technique of backtracking, a standard approach for solving constraint
satisfaction problems (CSPs). Backtracking algorithms explore a tree whose vertices are
partial solutions to a CSP in an attempt to find a complete solution. Assume there is a
classical backtracking algorithm which finds a solution to a CSP on n variables, or outputs
that none exists, and whose corresponding tree contains T vertices, each vertex corresponding
to a test of a partial solution. Then we show that there is a bounded-error quantum algorithm
which completes the same task using O(

√
T n3/2 logn) tests. In particular, this quantum

algorithm can be used to speed up the DPLL algorithm, which is the basis of many of the
most efficient SAT solvers used in practice. The quantum algorithm is based on the use of a
quantum walk algorithm of Belovs to search in the backtracking tree.

1 Introduction

Grover’s quantum search algorithm [33] is one of the great success stories of quantum computation. One
important domain to which the algorithm can be applied is the solution of constraint satisfaction problems
(CSPs). Consider a constraint satisfaction problem (CSP) expressed as a predicate P : [d]n→{true, false},
∗Supported by EPSRC Early Career Fellowship EP/L021005/1.

ACM Classification: F.1.2, G.1.6

AMS Classification: 81P68, 68Q25

Key words and phrases: quantum computing, quantum query complexity, quantum walk

© 2018 Ashley Montanaro
cb Licensed under a Creative Commons Attribution License (CC-BY) DOI: 10.4086/toc.2018.v014a015

http://dx.doi.org/10.4086/toc
http://theoryofcomputing.org/copyright2009.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4086/toc.2018.v014a015


ASHLEY MONTANARO

where [d] = {0, . . . ,d−1}. We would like to find an assignment x to the n variables such that P(x) is
true, or output “not found” if no such x exists. This framework encompasses many important problems
such as Boolean satisfiability and graph colouring. Grover’s algorithm solves such a CSP using O(

√
dn)

evaluations of P, whereas with no further information about P, finding an x such that P(x) is true requires
Ω(dn) evaluations classically in the worst case. However, when we are faced with an instance of a CSP
in practice, we usually have some additional information about its structure. For example, P may be
defined as the conjunction of smaller constraints of a particular type, as in the case of graph colouring.
This information often allows classical algorithms to solve the CSP significantly more efficiently than the
above bound would suggest, throwing some doubt on whether straightforward use of Grover’s algorithm
will really be used to solve CSPs in practice.

One of the most important and most general classical tools to take advantage of problem structure,
both in theory and in practice, is backtracking [9]. This technique can be used when we have the ability
to recognise whether partial solutions to a problem can be extended to full solutions. We assume that
the predicate P allows us to pass it a partial assignment x of the form x : S→ [d], where S⊆ {1, . . . ,n},
which specifies the values assigned to the variables in the set S. We can equivalently think of x as an
element of D := ([d]∪{∗})n, where the ∗’s represent the positions which are as yet unassigned values.
We say that x is complete if it contains no ∗’s. Then P returns:

• “true” if x is a solution to the CSP (that is, for any complete assignment consistent with x, that
assignment is a valid solution);

• “false” if it is clear that x cannot be extended to a solution to the CSP (that is, no complete
assignment consistent with x is a valid solution);

• “indeterminate” otherwise.

We say that a partial assignment x is valid if P(x) is true or indeterminate, and invalid if P(x) is false.
Algorithm 1 below describes a generic way to use this information classically. The algorithm assumes

access to P and a heuristic h(x) which determines how to extend a given partial assignment x, by selecting
the next variable to assign a value. One simple example of a heuristic would be to order the variables
arbitrarily, and then return the lowest index of a variable not yet assigned a value. However, one could
also consider more complicated heuristics based on other properties of x. We think of P and h as black
boxes (“oracles”). The basic idea behind Algorithm 1 is to fail early: if we know that a partial assignment
cannot be extended to a solution, we should give up on it and try a different one. We can think of the
algorithm as exploring a tree, whose internal vertices are partial solutions to P, and whose leaves are
solutions to P or certificates that the partial solution cannot be extended to a complete solution. This tree
is of size at most O(dn), but for some problem instances could be substantially smaller.

A canonical example of a powerful backtracking algorithm which fits into the framework of Algo-
rithm 1 is the DPLL (Davis-Putnam-Logemann-Loveland) algorithm [23, 22] for k-SAT. This algorithm
forms the basis of many of the most successful SAT solvers used in practice [25, 40, 32]. For many
practically relevant problem instances, the algorithm runs more quickly than worst-case upper bounds
would suggest. Another appealing aspect of this algorithm is that, unlike “local search” methods based on
random walks or similar ideas, it can sometimes produce efficient proofs of unsatisfiability, corresponding
to small backtracking trees.

THEORY OF COMPUTING, Volume 14 (15), 2018, pp. 1–24 2

http://dx.doi.org/10.4086/toc


QUANTUM-WALK SPEEDUP OF BACKTRACKING ALGORITHMS

Assume that we are given access to a predicate P : D→{true, false, indeterminate}, and a heuristic
h : D→{1, . . . ,n} which returns the next index to branch on from a given partial assignment.

Return bt(∗n), where bt is the following recursive procedure:

bt(x):

1. If P(x) is true, output x and return.

2. If P(x) is false, or x is a complete assignment, return.

3. Set j = h(x).

4. For each w ∈ [d]:

(a) Set y to x with the j’th entry replaced with w.

(b) Call bt(y).

Algorithm 1: General classical backtracking algorithm.

We now sketch how one version of DPLL can be understood as an instance of Algorithm 1. Assume
we have a k-SAT formula φ on n variables, and we want to list its satisfying assignments. The predicate
P behaves as follows, given a partial assignment x as input. Substitute the assigned values in x into φ . If
φ then evaluates to true or false, return that value. Otherwise, for each clause in φ that contains only one
variable, assign a value to that variable such that φ does not evaluate to false. Next, for each variable
that only occurs negated or unnegated in φ , assign false or true (respectively) to that variable. Repeat
this procedure until φ no longer changes. At the end, if φ is neither true or false, return indeterminate.
One simple heuristic h that can be used is to select the first variable still present in the simplified formula.
However, a variety of more complicated heuristics h can also be used, and the choice of heuristic can
substantially affect the search time in practice; see [44] for a discussion and experimental results.

Note that Algorithm 1 outputs all solutions x such that P(x) is true, though in practice the algorithm
might be modified to terminate when the first solution is found. We assume that P and h can both be
evaluated in time poly(n), so the most important contribution to the complexity of Algorithm 1 is usually
the number of vertices in the tree, which can often be exponential in n. To simplify the complexity bounds,
we also assume throughout that d = O(1); this is effectively without loss of generality as any predicate
with local domain size d can be replaced with one which uses O(logd) bits to encode each variable.

1.1 Results

We show here that there is a quantum equivalent of Algorithm 1 which can be substantially faster.

Theorem 1.1. Let T be an upper bound on the number of vertices in the tree explored by Algorithm 1.
Then for any 0 < δ < 1 there is a quantum algorithm which, given T , evaluates P and h O(

√
T n log(1/δ ))

times each, outputs true if there exists x such that P(x) is true, and outputs false otherwise. The algorithm
uses poly(n) space, O(1) auxiliary operations per use of P and h, and fails with probability at most δ .

THEORY OF COMPUTING, Volume 14 (15), 2018, pp. 1–24 3

http://dx.doi.org/10.4086/toc


ASHLEY MONTANARO

We usually think of T as being exponential in n; in this regime this complexity is a near-quadratic
speedup over the classical algorithm, assuming that the classical algorithm explores the whole tree. In a
black-box setting, a query complexity lower bound on Ω(

√
T n) queries to P and h follows from a bound

of Aaronson and Ambainis [1] on the complexity of local search in graphs (see Section 4 for a discussion),
so the complexity bound of Theorem 1.1 is optimal for δ = Ω(1). The algorithm can be modified to find
a solution, rather than just detect the existence of one, with a small penalty in the running time.

Theorem 1.2. Let T be the number of vertices in the tree explored by Algorithm 1. Then for any
0 < δ < 1 there is a quantum algorithm which makes O(

√
T n3/2 logn log(1/δ )) evaluations of each of P

and h, and outputs x such that P(x) is true, or “not found” if no such x exists. If we are promised that
there exists a unique x0 such that P(x0) is true, there is a quantum algorithm which outputs x0 making
O(
√

T n log3 n log(1/δ )) evaluations of each of P and h. In both cases the algorithm uses poly(n) space,
O(1) auxiliary operations per use of P and h, and fails with probability at most δ .

We stress that these results can be applied to any backtracking algorithm which fits into the framework
of Algorithm 1, whatever the predicate P or the choice of the heuristic h. In particular, they can be applied
to the DPLL algorithm as discussed above.

Theorems 1.1 and 1.2 can also be applied to backtracking algorithms which make use of randomness
in the heuristic h, by interpreting these algorithms as first fixing a random seed, then using this seed as
input to a deterministic heuristic h. Note that in this case, depending on the model one assumes, the
algorithm could be query-efficient but not time-efficient. This is because writing down the random seed
itself would require time Θ(T ). In practice, “randomised” heuristics are often based on the use of efficient
pseudorandom number generators. In this case we would effectively have a deterministic heuristic, and
would hence retain time-efficiency.

Observe that the bound on the running time in Theorem 1.2 is instance-dependent and, to use it, we
do not need to know an upper bound on the running time T of the underlying classical backtracking
algorithm. For instances on which the classical algorithm runs quickly, the quantum algorithm also runs
quickly. However, also observe that the running time of the quantum algorithm for detecting the existence
of a solution scales like O(

√
T n), regardless of how many solutions there are and where they are located.

If the classical algorithm is asked only to determine the existence of a solution, rather than to find all
of them, its running time might be substantially less than O(T ). In particular, if there are substantially
more than

√
T solutions and they are uniformly distributed throughout the tree, the classical running

time required to find a solution may be less than the quantum running time; another case where this can
happen is if the classical algorithm is lucky and finds a solution “early on” in the tree. These limitations
have been removed by subsequent work of Ambainis and Kokainis [7], who have described a quantum
algorithm which finds a solution in time Õ(

√
T ′n3/2), where T ′ is the number of vertices actually visited

by the classical algorithm.
The quantum algorithms can be leveraged to obtain an exponential separation between average

quantum and classical running times. The speedup for any given instance is approximately quadratic.
However, given the right distribution on the input instances, this can be amplified to an exponential
average running time separation. This phenomenon was first noted in the context of quantum query
complexity by Ambainis and de Wolf [6], who gave several examples of superpolynomial separations
in expected running time for the computation of total functions. While a striking effect, it is not clear

THEORY OF COMPUTING, Volume 14 (15), 2018, pp. 1–24 4

http://dx.doi.org/10.4086/toc


QUANTUM-WALK SPEEDUP OF BACKTRACKING ALGORITHMS

whether this has any meaningful consequences, given that the speedup on each instance is just polynomial.
We therefore defer a more detailed discussion to the arXiv version of this work [45].

1.2 Techniques

The algorithms which achieve the bounds of Theorems 1.1 and 1.2 are based on the use of a discrete-time
quantum walk to find a marked vertex within the tree produced by the classical backtracking algorithm,
corresponding to a partial solution x such that P(x) is true. Quantum walks have become a basic tool
in quantum algorithm design [19, 4, 53, 42]. In particular, they have been applied in several contexts
to solve search problems on graphs [51, 53, 42, 38], sometimes achieving up to a quadratic speedup
over classical algorithms. However, in prior work it is usually assumed that the input graph is known
in advance, and moreover that the initial state of the quantum walk is the stationary distribution of the
corresponding random walk. Aaronson and Ambainis [1] described a different approach to spatial search
on graphs; this does not use a quantum walk, but also assumes the input graph is known in advance.

Here we would like to use quantum walks in a context where the input graph is defined implicitly by
the backtracking algorithm and hence is not known in advance, and where the walk starts at the root of the
tree. One of the few cases where such walks have been studied is beautiful work of Belovs [10, 11]. The
main result of that work relates the complexity of detecting a marked vertex by quantum walk on a graph
to the effective resistance of the graph. Informally, this quantity is determined by thinking of the graph as
an electrical circuit and calculating the resistance between the initial vertex and the set of marked vertices.
Belovs’ result can be seen as a quantum variant of previous classical work characterising properties of
random walks on graphs (such as the commute time and cover time) in terms of effective resistance [17].

The main quantum subroutine used here is just the special case of Belovs’ result where the underlying
graph is a tree, for which we include a slightly more concise correctness proof. We are also able to
extend Belovs’ work to give an algorithm for finding a marked vertex in a tree, rather than just detecting
one. This can easily be achieved using binary search; in the case where there is promised to be a unique
marked element, we give a more efficient algorithm based on analysing eigenvectors of the quantum walk
operator.

Once we have the quantum search algorithm, all that remains is to check the claim that the P and h
functions can indeed be used to implement the required quantum walk operations, namely mixing across
the neighbours of a vertex in the tree, dependent on whether the vertex is marked. To do this one has to
be careful to ensure that the quantum walk steps are implemented efficiently.

1.3 Other prior work

This paper is connected to prior work in a number of different areas: classical and quantum algorithms for
backtracking, other quantum techniques for solving CSPs, and quantum walk algorithms. Backtracking is
a fundamental technique in computer science and has been studied since at least the 1960s. The classical
literature on this topic is too vast to summarise here; see [37, 29, 9] for introductions to the topic and
historical overviews. We now discuss relevant prior results within the field of quantum computation.

First, Cerf, Grover and Williams attempted to find a direct quantum speedup of backtracking algo-
rithms [16]. The algorithm of [16] is based on a nested version of Grover search. The complete tree of
partial assignments is expanded to a certain depth, then quantum search is performed within the subset

THEORY OF COMPUTING, Volume 14 (15), 2018, pp. 1–24 5

http://dx.doi.org/10.4086/toc


ASHLEY MONTANARO

of partial assignments which have not yet been ruled out. The complexity of the algorithm depends
on the number of valid partial assignments at this depth. It is argued in [16] that, for some reasonable
distributions on random CSPs, the average complexity of the quantum algorithm (over the distribution
on instances) will be smaller than would be obtained from Grover search. By contrast, the bounds of
Theorems 1.1 and 1.2 hold in the worst case and are applicable to arbitrary backtracking algorithms: if a
faster backtracking algorithm is found, we immediately obtain a faster quantum algorithm.

The algorithm used here can be seen as an extreme version of the nested search strategy of [16].
The diffusion operation used in the quantum walk can be viewed as applying Grover search within a
subspace spanned by a vertex in the tree and its children. The algorithm repeatedly performs these
searches across many vertices and levels simultaneously. On the other hand, the algorithm of [16] can be
seen as accelerating a restricted classical backtracking algorithm which uses a predicate P which is only
capable of detecting whether partial assignments at a particular level are false.

Similarly to the present work, Farhi and Gutmann [28] have studied the use of quantum walks to
speed up classical backtracking algorithms by searching within the backtracking tree.1 These authors
showed that there are some trees for which continuous-time quantum walks can be used to find a marked
vertex exponentially faster than a classical random walk. The special structure of these trees leads to
interference effects which enable the quantum walk to penetrate the tree more quickly than the random
walk. However, for the examples presented in [28] where there is an exponential speedup of this form, the
structure of the tree enables an alternative classical algorithm to also find a marked vertex efficiently. Here,
we seek to accelerate classical search in arbitrary trees, with no prior assumptions about the structure of
the tree.

A related, but different, approach towards quantum speedup of recursive classical algorithms was
proposed by Fürer [30]. Imagine we have a constraint satisfaction problem for which we can put a non-
trivial upper bound L on the number of leaves in the computation tree of a recursive classical algorithm
for solving the problem. The idea of [30] was to apply Grover search over the leaves of the computation
tree to find a solution in time O(

√
Lpoly(n)). This approach relies on knowing, in advance, an efficiently

computable mapping associating each integer between 1 and L with a leaf. For many more complicated
recursive algorithms we may not know such a mapping. Indeed, it is unlikely to be possible to compute
such a mapping for general backtracking algorithms in polynomial time. Counting the number of vertices
in a backtracking tree is known to be #P-complete [52], but the ability to determine the identity of the
`’th leaf, for arbitrary `, would allow the number of vertices in the tree to be calculated efficiently via
an exponential doubling procedure. The quantum algorithm presented here, on the other hand, can be
applied to any classical backtracking algorithm, even if we do not know a bound on L in advance.

A somewhat similar idea to Fürer’s was previously used by Angelsmark, Dahllöf and Jonsson [8] to
obtain quantum speedups for CSPs. These authors observed that, for certain CSPs, one can construct a
set of dcn easily checked certificates, for some c < 1, such that the existence of a solution to the CSP is
certified by at least one certificate. Then Grover search can be used to find a certificate, if one exists, in
time O(dcn/2 poly(n)).

An alternative, and simpler, approach to find quantum speedups of classical algorithms for CSPs is
the use of amplitude amplification [14]. This can be applied to any classical algorithm which can be

1Their paper uses somewhat different terminology, e. g., “decision tree” rather than “backtracking tree”, but the basic setting
is the same.

THEORY OF COMPUTING, Volume 14 (15), 2018, pp. 1–24 6

http://dx.doi.org/10.4086/toc


QUANTUM-WALK SPEEDUP OF BACKTRACKING ALGORITHMS

expressed as repeatedly running a randomised subroutine which runs in time poly(n) and finds a solution
with probability p. The corresponding quantum algorithm has a running time of O((1/

√
p)poly(n)), a

near-quadratic improvement on the classical O((1/p)poly(n)) if p is small. For example, it was observed
by Ambainis [3] that Schöning’s efficient randomised algorithm for k-SAT [50] can be accelerated in
this way; Dantsin, Kreinovich and Wolpert [21] gave several other examples. Deterministic backtracking
algorithms are, of course, not amenable to this approach.

Finally, a completely different technique for solving CSPs is the quantum adiabatic algorithm [27].
Although there is some numerical evidence that this algorithm may outperform classical algorithms for
CSPs [26], the adiabatic algorithm’s running time is hard to analyse for large input sizes and there is as
yet no analytical proof of its superiority over classical algorithms.

Quantum walks on trees have been used previously in a quite distinct context, to obtain a near-
quadratic speedup for evaluation of AND-OR formulae [5]. In that algorithm the structure of the formula
(which is known in advance) defines the tree on which the walk takes place. It is interesting to note
that the quantum walk used in [5] is similar to the quantum walk used here, but has apparently quite
different properties. In that work, an eigenvalue of the quantum walk operator determines whether an
AND-OR formula evaluates to 1, whereas here it determines whether the tree contains a marked vertex.
Another case where the concept of effective resistance was used in quantum computing is work by Wang,
which gave an efficient quantum algorithm for approximating effective resistances [55]. This uses some
similar ideas to the present work but does not seem directly applicable. Subsequent work by Jeffery and
Kimmel [35] has used effective resistance to relate the quantum query complexity of evaluating a NAND
tree to a complexity measure of the tree.

1.4 Subsequent applications

Following the completion of an initial version of this work, several papers have applied the quantum
algorithm given here to speed up classical backtracking algorithms.

Alkim et al. [2] and del Pino, Lyubashevsky and Pointcheval [24] suggested that the quantum
backtracking algorithm could be used to obtain a quadratic speedup for solving the shortest vector
problem in lattices, by accelerating classical lattice-enumeration algorithms based on the BKZ algorithm
of Schnorr and Euchner [49, 31, 18]. The enumeration subroutine of the BKZ algorithm as usually
described uses information from vertices previously visited in the backtracking tree (such as the length of
the shortest vector found so far) to prune the tree, so it does not quite fit the requirements of the quantum
backtracking algorithm. However, efficient variants of the algorithm are known which do not use this
type of optimisation (e. g., [31, Algorithm 2]), and these should allow a quantum speedup.

Mandrà, Guerreschi and Aspuru-Guzik [43] combined the quantum backtracking algorithm with a
novel reduction to obtain quantum speedups for solving exact satisfiability problems. Finally, Moylett,
Linden and the author [46] gave near-quadratic quantum speedups over the most efficient classical
algorithms known for solving the Travelling Salesman Problem on bounded-degree graphs. The result
of [46] is based on applying the quantum backtracking algorithm to accelerate classical algorithms of
Xiao and Nagamochi [56, 57].

As discussed in Section 1.1, subsequent work of Ambainis and Kokainis [7] has removed the limitation
that the running time of the quantum backtracking algorithm depends on the size of the entire tree. Their

THEORY OF COMPUTING, Volume 14 (15), 2018, pp. 1–24 7

http://dx.doi.org/10.4086/toc


ASHLEY MONTANARO

algorithm finds a solution in time Õ(
√

T ′n3/2), where T ′ is the number of vertices actually visited by the
classical algorithm.

1.5 Organisation

We begin in Section 2 by describing the main underlying quantum ingredient, the use of a quantum
walk to detect a marked vertex in a tree. This algorithm is a special case of an algorithm described by
Belovs [10]. We then go on in Sections 2.3 and 2.4 to describe extensions to this algorithm to allow
finding a marked vertex, and a faster running time in the case where we know there is a unique marked
vertex. Section 3 shows that the algorithm can be applied to accelerate backtracking algorithms for CSPs.
Section 4 concludes with a discussion of some ways in which the algorithm could be improved, and
barriers to doing so.

2 Quantum walks on trees

2.1 Preliminaries

We will need the following tools, which have been used many times elsewhere in quantum algorithm
design.

Lemma 2.1 (Effective spectral gap lemma [39]). Let ΠA and ΠB be projectors on the same Hilbert space,
and set RA = 2ΠA− I, RB = 2ΠB− I. Let Pχ be the projector onto the span of the eigenvectors of RBRA

with eigenvalues e2iθ such that |θ | ≤ χ . Then, for any vector |ψ〉 such that ΠA|ψ〉= 0, we have

‖PχΠB|ψ〉‖ ≤ χ‖|ψ〉‖ .

Theorem 2.2 (Phase estimation [20, 36]). For every integer s≥ 1, and every unitary U on m qubits, there
exists a uniformly generated quantum circuit C that acts on m+ s qubits and has the following properties.

1. C uses the controlled-U operator O(2s) times, and contains O(s2) other gates.

2. For every eigenvector |ψ〉 of U with eigenvalue 1, C|ψ〉|0s〉= |ψ〉|0s〉.

3. If U |ψ〉= e2iθ |ψ〉, where θ ∈ (0,π), then C|ψ〉|0s〉= |ψ〉|ω〉, where |ω〉 satisfies

|〈ω|0s〉|2 = sin2(2s
θ)/(22s sin2

θ) .

4. For any |φ〉 ∈ (C2)⊗m, expanded as |φ〉 = ∑k λk|ψk〉, where |ψk〉 is an eigenvector of U with
eigenvalue e2iθk , then

C|φ〉|0s〉= ∑
k

λk|ψk〉|ωk〉 ,

where ∑k:θk≥ε |〈ωk|0s〉|2 = O(1/(2sε)) for any ε > 0.

Call 2−s the precision of the circuit.

THEORY OF COMPUTING, Volume 14 (15), 2018, pp. 1–24 8

http://dx.doi.org/10.4086/toc


QUANTUM-WALK SPEEDUP OF BACKTRACKING ALGORITHMS

Phase estimation is normally used to estimate eigenvalues of U (hence its name); here, however,
similarly to [42] we will only need to apply it to distinguish the eigenvalue 1 from other eigenvalues. If
the smallest nonzero phase is ε , this can be done with O(1/ε) uses of controlled-U .

Fact 2.3 (Close states and measurement outcomes, see, e. g., [13]). Let |ψ1〉, |ψ2〉 be quantum states satis-
fying ‖|ψ1〉− |ψ2〉‖= ε . Then the total variation distance between the two distributions on measurement
outcomes obtained by measuring each state in the computational basis is at most ε .

(This fact is usually presented with ε replaced with 4ε [13]; the tighter constant stated here can easily
be obtained by relating the fidelity of |ψ1〉 and |ψ2〉 to their trace distance, for example.)

2.2 The quantum walk algorithm

We now describe a quantum algorithm for detecting a marked vertex in a tree. The algorithm is a special
case of a beautiful connection between quantum walks and electrical circuits due to Belovs [10] (see
also [11]), which is a quantum analogue of a similar connection between random walks and electrical
circuits [17]. This is conceptually elegant and leads to a very concise proof of a previous result of
Szegedy [53] on detecting marked elements using a quantum walk. Here we only use these ideas for
the special case of trees and a quantum walk starting at the root. This will enable us to simplify some
notation and, hopefully, make the algorithm more intuitive.

Consider a rooted tree with T vertices, labelled r,1, . . . ,T −1, with vertex r being the root, where
the distance from the root to any leaf is at most n. Assume for simplicity in what follows that the
root is promised not to be marked. For each vertex x, let `(x) be the distance of x from the root. We
assume throughout that, although we do not necessarily know the structure of the tree in advance, we can
determine `(x) for any x. Let A be the set of vertices an even distance from the root (including the root
itself), and let B be the set of vertices at an odd distance from the root. We write x→ y to mean that y is a
child of x in the tree. For each x, let dx be the degree of x as a vertex in an undirected graph. Thus, for all
x 6= r, dx = |{y : x→ y}|+1; and dr = |{y : r→ y}|.

The quantum walk operates on the Hilbert space H spanned by {|r〉}∪{|x〉 : x ∈ {1, . . . ,T −1}}, and
starts in the state |r〉. Unlike many discrete-time quantum walk algorithms, it does not use a separate
“coin” space. The walk is based on a set of diffusion operators Dx, where Dx acts on the subspace Hx

spanned by {|x〉}∪{|y〉 : x→ y}. The diffusion operators are defined as follows.

• If x is marked, then Dx is the identity.

• If x is not marked, and x 6= r, then Dx = I−2|ψx〉〈ψx|, where

|ψx〉=
1√
dx

(
|x〉+ ∑

y,x→y
|y〉

)
.

Note that if x is a leaf vertex, then |ψx〉= |x〉.

• Dr = I−2|ψr〉〈ψr|, where

|ψr〉=
1√

1+drn

(
|r〉+

√
n ∑

y,r→y
|y〉

)
.

THEORY OF COMPUTING, Volume 14 (15), 2018, pp. 1–24 9

http://dx.doi.org/10.4086/toc


ASHLEY MONTANARO

Input: Operators RA, RB, a failure probability δ , upper bounds on the depth n and the number of
vertices T . Let β ,γ > 0 be universal constants to be determined.

1. Repeat the following subroutine K = dγ log(1/δ )e times:

(a) Apply phase estimation to the operator RBRA on |r〉 with precision β/
√

T n.

(b) If the eigenvalue is 1, accept; otherwise, reject.

2. If the number of acceptances is at least 3K/8, return “marked vertex exists”; otherwise, return
“no marked vertex.”

Algorithm 2: Detecting a marked vertex.

Observe that Dx can be implemented with only local knowledge, i. e., based only on whether x is marked
and the neighbourhood structure of x. A step of the walk consists of applying the operator RBRA, where

RA =
⊕
x∈A

Dx and RB = |r〉〈r|+
⊕
x∈B

Dx .

An alternative way of viewing this process is as a quantum walk on the graph given by the edges of
the tree, where we identify each vertex with the edge from its parent in the tree, and add an additional
“input” edge into the root. Also note that the quantum walk is similar to the “staggered” quantum walks
considered in [48].

The algorithm for detecting a marked vertex is presented as Algorithm 2.
The next lemma is a special case of a result of Belovs [10, Theorem 4].

Lemma 2.4 (Belovs). Algorithm 2 makes O(
√

T n log(1/δ )) uses of each of RA and RB. There exist
universal constants β , γ such that it fails with probability at most δ .

Proof. The complexity bound is immediate from Theorem 2.2. For the correctness proof, we first show
that, if there is a marked vertex, then |r〉 is quite close to (a normalised version of) an eigenvector |φ〉 of
RBRA with eigenvalue 1. Let x0 be a marked vertex and set

|φ〉=
√

n|r〉+ ∑
x 6=r,x x0

(−1)`(x)|x〉 . (2.1)

Here x x0 denotes the vertices x on the unique path from the root to x0, including x0 itself. To see that
|φ〉 is invariant under RBRA, first note that |φ〉 is orthogonal to all states |ψx〉, where x 6= r and x is not
marked. Indeed, any such state |ψx〉 either has uniform support on exactly 2 consecutive vertices v in the
path from r to x0, or is not supported on any vertices in this path. |φ〉 is also orthogonal to |ψr〉 by direct
calculation. We have

‖|φ〉‖2 = n+ `(x0)≤ 2n .

Thus
〈r|φ〉
‖|φ〉‖

≥ 1√
2
.

THEORY OF COMPUTING, Volume 14 (15), 2018, pp. 1–24 10

http://dx.doi.org/10.4086/toc


QUANTUM-WALK SPEEDUP OF BACKTRACKING ALGORITHMS

Therefore, phase estimation returns the eigenvalue 1 with probability at least 1/2. On the other hand, if
there are no marked vertices, we consider the vector

|η〉= |r〉+
√

n ∑
x 6=r
|x〉 .

Let ΠA and ΠB be projectors onto the invariant subspaces of RA and RB, i. e., ΠA = (I +RA)/2, ΠB =
(I +RB)/2. These spaces are spanned by vectors of the form |ψ⊥x 〉 for x ∈ A, x ∈ B respectively, where
|ψ⊥x 〉 is orthogonal to |ψx〉 and has support only on {|x〉}∪{|y〉 : x→ y}; in addition to |r〉 in the case
of RB. On each subspace Hx, x ∈ A, |η〉 is proportional to |ψx〉, so ΠA|η〉= 0. Similarly ΠB|η〉= |r〉.
Recall that Pχ is the projector onto the span of the eigenvectors of RBRA with eigenvalues e2iθ such that
|θ | ≤ χ . By the effective spectral gap lemma (Lemma 2.1), ‖Pχ |r〉‖= ‖PχΠB|η〉‖ ≤ χ‖|η〉‖ ≤ χ

√
T n.

For small enough χ = Ω(1/
√

T n), this is upper-bounded by 1/2. By Theorem 2.2, there exists β such
that applying phase estimation to RBRA with precision β/

√
T n returns the eigenvalue 1 with probability

at most 1/4.
Using a Chernoff bound, there exists γ such that, by repeating the subroutine dγ log(1/δ )e times and

returning “marked vertex exists” if the fraction of acceptances is greater than 3/8, and “no marked vertex”
otherwise, we obtain that the overall algorithm fails with probability at most δ .

2.3 Finding a marked vertex

From now on, we assume that the degree of every vertex in the tree is O(1); this is not a significant
restriction for the application to backtracking. For trees obeying this restriction we can use the detection
algorithm as a subroutine to find a marked vertex efficiently, via binary search.

To find a marked vertex, we start by applying Algorithm 2 to the entire tree. If it outputs “marked
vertex exists,” we apply the algorithm to the subtrees rooted at each child of the root in turn, to detect
marked vertices within each subtree. Assuming the algorithm did not fail at any point, there must be
a marked vertex in at least one subtree. We pick the root of one such subtree and check whether it is
marked. If it is marked, we output its label and terminate; if it is not marked, we apply Algorithm 2 to
each of its children and repeat. This process continues until we have found a marked vertex. As there
are at most O(n) repetitions to reach a leaf and O(1) subtrees are checked at each repetition, the time
complexity of the algorithm is multiplied by a factor of O(n). Note that, when we apply the algorithm to
subtrees, we must leave the parameter T unchanged; this is because the tree could be quite unbalanced,
and a given subtree could contain many vertices.

We have thus far assumed that we know an upper bound on T in advance. If we do not, we can
repeat the whole search algorithm O(logT ) = O(n) times, doubling a guess for T each time (starting
with T = 1) until we either find a marked vertex, or the algorithm returns “no marked vertex.” This
exponential doubling does not affect the asymptotic running time. If our guess for T is too low, the
correctness proof of Algorithm 2 no longer holds, so the detection algorithm may claim that there is a
marked vertex in a situation where there is actually no marked vertex. This may lead to the above binary
search procedure returning an incorrect result. But we can deal with this situation by checking the final
vertex returned by the search algorithm, and only terminating if it is marked; if it is not, we know that the
search has failed, and continue doubling our guess for T . On the other hand, one can see from inspecting
the proof of Lemma 2.4 that, if there is a marked vertex, the phase estimation subroutine in Algorithm 2

THEORY OF COMPUTING, Volume 14 (15), 2018, pp. 1–24 11

http://dx.doi.org/10.4086/toc


ASHLEY MONTANARO

will accept with probability at least 1/2 whether or not our guess for T is large enough. Therefore, if
there is a marked vertex, Algorithm 2 will output that a marked vertex exists with probability at least
1−δ , for δ of our choice.

Using this procedure the total number of uses of Algorithm 2 (with differing values of T ) is O(n2), so
in order for the whole algorithm to succeed with probability, say, 2/3, it is sufficient to reduce the failure
probability of each use of Algorithm 2 to O(1/n2). This costs an additional time factor of O(logn) per
use of the algorithm, giving a total running time of O(

√
T n3/2 logn). This can in turn be improved to an

arbitrary failure probability δ > 0 by taking O(log1/δ ) repetitions, leading to an overall bound of time
O(
√

T n3/2 logn log(1/δ )).
Finally, we can find all marked vertices by simply repeating the algorithm, modifying the underlying

oracle operator to strike out previously seen marked elements. If there are k marked elements, the overall
running time is O(k

√
T n3/2 logn log(k/δ )).

2.4 Search with a unique marked element

If we are promised that there exists a unique marked element in the tree, we can improve the above
bounds by a factor of almost n. In general this improvement is not particularly large, as we usually have
T � n; however, for some “tall and thin” trees it can be relatively significant. In particular, following this
improvement we see that the complexity of the quantum algorithm for the search problem is never worse
than the classical tree size O(T ), up to logarithmic factors.

We assume that there is a unique marked vertex x0 and that `(x0) = n. This second assumption is
without loss of generality. We can determine `(x0) at the start of the algorithm by applying Algorithm 2
to the subtree rooted at r and of depth i, for differing values of i. That is, we only expand the tree up to
depth i, and use binary search on i ∈ {1, . . . ,n} to find the minimal i such that the tree of depth i contains
x0. This needs O(logn) repetitions, so the complexity of this part is O(

√
T n logn log logn), where the

log log term comes from reducing the failure probability of Algorithm 2 to O(1/(logn)). Once `(x0) is
determined, we henceforth only search within the tree of depth `(x0).

Let |φ ′〉= |φ〉/‖|φ〉‖, where the eigenvector |φ〉 is defined in (2.1), i. e.,

|φ ′〉= 1√
2
|r〉+ 1√

2n ∑
x 6=r,x x0

(−1)`(x)|x〉 . (2.2)

The starting point for the search algorithm is the observation2 that |φ ′〉 encodes the entire path from r
to x0. If we measure |φ ′〉, and do not receive outcome r, we receive a measurement outcome y which is
uniformly distributed on the path from r to x0. We can then repeat the algorithm on the subtree rooted at y,
obtaining a new state of the form of |φ ′〉 for a smaller value of n. The expected number of measurements
we would need to make to find x0 is logarithmic in n (rather than the bound of O(n) which follows from
the previous binary search algorithm).

We first bound the total number of quantum walk steps used to find x0, given access to states of the
form of |φ ′〉 for various subtrees. Let C be chosen such that there is an algorithm which produces |φ ′〉
for an arbitrary subtree of the overall tree using C

√
T n steps (i. e., an algorithm which produces a state

of the form (2.2) for different choices of r). Given that `(x0) = n, measuring a copy of |φ ′〉 will give a

2A similar observation was used in [55] to approximate effective resistances.

THEORY OF COMPUTING, Volume 14 (15), 2018, pp. 1–24 12

http://dx.doi.org/10.4086/toc


QUANTUM-WALK SPEEDUP OF BACKTRACKING ALGORITHMS

“good” outcome (which is not r) with probability 1/2. The distance from the root of such an outcome is
uniformly distributed. Considering only the good outcomes, the expected total number of steps Sn to find
x0, given that `(x0) = n, therefore satisfies

Sn ≤
1
n

n−1

∑
i=0

Si +C
√

T n .

We claim that Sn ≤ 4C
√

T n. The proof is by induction. First, S0 = 0 as no quantum walk steps are made.
Assume Si ≤ 4C

√
Ti for all i < n. Then

Sn ≤
4C
n

n−1

∑
i=0

√
Ti+C

√
T n≤ 4C

√
1
n

n−1

∑
i=0

Ti+C
√

T n =
4C√

2

√
T
√

n−1+C
√

T n≤ 4C
√

T n ,

where the second inequality is Jensen’s inequality. As on average half the outcomes are good, the expected
total number of steps is thus at most 8C

√
T n.

We can approximately produce |φ ′〉 by applying phase estimation to the operator RBRA, with input
state |r〉. If we write

|r〉= 1√
2
|φ ′〉+ 1√

2
|φ⊥〉 ,

where |φ⊥〉 is normalised and orthogonal to |φ〉, the result of applying phase estimation on |r〉 with s
ancilla qubits is a state of the form

1√
2
|φ ′〉|0s〉+ 1√

2 ∑
k,θk>0

λk|ψk〉|ωk〉,

where |ψk〉 is an eigenvector of RBRA with eigenvalue e2iθk . Write each |ωk〉 as |ωk〉= µk|0s〉+ |ω ′k〉 for
some subnormalised vectors |ω ′k〉 orthogonal to |0s〉. If we obtain outcome |0s〉 when we measure the
second register, which will occur with probability at least 1/2, the first register collapses to

|φ̃ ′〉= 1√
1+∑k,θk>0 |λkµk|2

(
|φ ′〉+ ∑

k,θk>0
λkµk|ψk〉

)
.

To bound the distance between |φ̃ ′〉 and the desired state |φ ′〉, we split the sum into two parts. For any
ε > 0, via Theorem 2.2 we have

∑
k,θk≥ε

|λkµk|2 ≤ ∑
k,θk≥ε

|µk|2 = O(1/(2s
ε)) .

On the other hand, we prove the following technical claim in Section 2.5 below. Recall that Pε is the
projector onto the span of the eigenvectors of RBRA with eigenvalues e2iθ such that |θ | ≤ ε .

Lemma 2.5. ‖Pε |φ⊥〉‖= O(ε
√

T n).

THEORY OF COMPUTING, Volume 14 (15), 2018, pp. 1–24 13

http://dx.doi.org/10.4086/toc


ASHLEY MONTANARO

Given Lemma 2.5, we have

∑
k,0<θk≤ε

|λkµk|2 ≤ ∑
k,0<θk≤ε

|λk|2 = ‖Pε |φ⊥〉‖2 = O(ε2T n) .

Fixing an accuracy δ and taking ε = Θ(δ/
√

T n), 2s = O(
√

T n/δ 3), we have ‖|φ̃ ′〉− |φ ′〉‖= O(δ ). By
Fact 2.3, measuring |φ̃ ′〉 in the computational basis is indistinguishable from measuring |φ ′〉, except
with probability O(δ ). As the algorithm uses O(logn) copies of |φ ′〉 in total, the overall total variation
distance between the distribution on measurement outcomes obtained by using copies of |φ̃ ′〉 versus that
using copies of |φ ′〉 can be bounded by an arbitrarily small constant by taking δ = O(1/ logn). This
corresponds to the failure probability of the algorithm being bounded by an arbitrarily small constant.
The overall complexity of the algorithm is therefore O(

√
T n log3 n).3 As before, the failure probability

can be made arbitrarily small via repetition.
One may wonder whether the same approach could work when the number of marked elements is

greater than 1. In this case, the subspace spanned by eigenvectors of RBRA with eigenvalue 1 will include
states of the form (2.2) for different marked elements x0. Dependent on the position of these marked
elements in the tree, the projection of |r〉 onto this subspace could be a state with high weight on levels of
the tree near the root, unlike the case of a single marked element, where the weight of |φ ′〉 is uniform
across the entire path to x0. So the search procedure above will be less efficient, as fewer levels of the tree
will be traversed at each iteration.

In Section 4 we discuss some other barriers to improving the complexity and applicability of these
algorithms.

2.5 Proof of technical claim for search with one marked element

In this subsection, we prove the following claim from Section 2.4.

Lemma 2.5 (restated). ‖Pχ |φ⊥〉‖= O(χ
√

T n).

Let x0 be the unique marked vertex, assuming for simplicity in the proof (as justified in Section 2.4)
that `(x0) = n, and hence that x0 is a leaf in the tree. We can write

|φ⊥〉 =
√

2|r〉− |φ ′〉=
√

2|r〉− 1√
2n

(
√

n|r〉+ ∑
x 6=r,x x0

(−1)`(x)|x〉

)

=
1√
2
|r〉− 1√

2n ∑
x 6=r,x x0

(−1)`(x)|x〉 .

Recall that ΠA and ΠB are projectors onto the invariant subspaces of RA and RB. The invariant subspace of
RA is spanned by vectors of the form |ψ⊥x 〉 for each vertex x∈ A, and if x0 ∈ A, in addition the vector |ψx0〉.
The invariant subspace of RB is similar (replacing A with B) but also contains |r〉. Here 〈ψx|ψ⊥x 〉= 0 and
|ψ⊥x 〉 has support only on {|x〉}∪{|y〉 : x→ y}. In order to apply the effective spectral gap lemma, we
determine a vector |ξ 〉 such that ΠA|ξ 〉= 0 and ΠB|ξ 〉= |φ⊥〉.

3One way to improve the polylogarithmic factors in this complexity could be to reweight the tree such that the eigenvector of
RBRA with eigenvalue 1 has more weight on x0 (Alexander Belov, personal communication).

THEORY OF COMPUTING, Volume 14 (15), 2018, pp. 1–24 14

http://dx.doi.org/10.4086/toc


QUANTUM-WALK SPEEDUP OF BACKTRACKING ALGORITHMS

First assume x0 ∈ B. We will take |ξ 〉 to be a linear combination of vectors |ψx〉 for x ∈ A. Then the
first of these two constraints is immediately satisfied. The second will be satisfied if, for a set of vectors
|ζ 〉 which span the invariant subspace of RB, i. e.,

|ζ 〉 ∈ {|r〉, |ψx0〉}∪{|ψ⊥x 〉 : 〈ψ⊥x |ψx〉= 0,x ∈ B} ,

we have 〈ζ |ξ 〉 = 〈ζ |φ⊥〉. To compute the required inner products, first observe that |ψ⊥x 〉 only has
support on x and its children, so for all x not on the path from r to x0, 〈ψ⊥x |φ⊥〉= 0. On the other hand,
for each x ∈ B such that x x0, define a basis for the space span{|ψ⊥x 〉 : 〈ψ⊥x |ψx〉 = 0} by fixing the
vectors

|ψ⊥x,i〉=−|x〉+(dx−1)|Ni(x)〉−∑
j 6=i
|N j(x)〉 ,

where Ni(x) denotes the i’th child of x, recalling that dx denotes the degree of x. We have

〈ψ⊥x,i|φ⊥〉=

{
−dx/

√
2n if i = i0,

0 otherwise.
(2.3)

where i0 denotes the unique child of x on the path to x0.
We now find a vector |ξ 〉= ∑x αx|x〉 satisfying the above constraints. First, we require αr = 〈r|ξ 〉=

〈r|φ⊥〉= 1/
√

2 and αx0 = 〈x0|φ⊥〉= 1/
√

2n. For each x, let x′ denote the parent of x in the tree. For |ξ 〉
to be a linear combination of vectors |ψx〉, x ∈ A, it is necessary and sufficient that αx = αx′ for all x ∈ B;
except in the case `(x) = 1, where we require αx =

√
nαr. We in addition need αx = αx′ for all x 6= r ∈ A

such that x′ is not on the path to x0, in order that 〈ψ⊥x′ |ξ 〉= 〈ψ⊥x′ |φ⊥〉= 0. For each child y of x ∈ B, set
αy = γ if y 6 x0, and αy = δ if y x0. Then from (2.3) we have the final constraints that

−αx +2γ−δ = 0 if y 6 x0 ,

−αx− (dx−2)γ +(dx−1)δ =− dx√
2n

if y x0 .

These equations have unique solution γ = αx−1/
√

2n, δ = αx−
√

2/n. This now uniquely defines all
coefficients αx. In particular, observe that

αx0 =

√
n
2
−
(

n−1
2

)√
2
n
=

1√
2n

as required.
This constructs |ξ 〉 in the case where x0 ∈ B. If instead x0 ∈ A, the procedure is similar. Now |ψx0〉 is

not in the invariant subspace of RB (which only makes it easier to satisfy the inner product constraints),
but also |ξ 〉 must be a linear combination of vectors |ψx〉 corresponding only to unmarked vertices x ∈ A.
This new constraint implies that now αx0 = 0. But following the above procedure now gives

αx0 =

√
n
2
− n

2

√
2
n
= 0

as required. In either case, for all x, we have |αx| ≤
√

n/2. So ‖|ξ 〉‖ = O(
√

T n) and hence, by the
effective spectral gap lemma (Lemma 2.1), ‖Pχ |φ⊥〉‖= O(χ

√
T n).

THEORY OF COMPUTING, Volume 14 (15), 2018, pp. 1–24 15

http://dx.doi.org/10.4086/toc


ASHLEY MONTANARO

3 From quantum walks on trees to accelerating backtracking

To complete the proofs of Theorems 1.1 and 1.2, we now verify that Algorithm 2 can be applied to search
in the tree defined by a backtracking algorithm. In order to do this, it is sufficient to define a suitable
efficient mapping between partial assignments and vertices in a tree, and to implement the operators
RA and RB appropriately and efficiently. As the quantum walk subroutines assume that the root of the
tree is not marked, the first step of the algorithm is to check whether P(∗n) is true. If so, the algorithm
immediately returns “true”; if not, it runs Algorithm 2 on a graph defined as follows.

The current state of the backtracking algorithm is represented by a vertex in a rooted tree labelled with
a sequence of the form (i1,v1), . . . ,(i`,v`), for 1≤ `≤ n. The sequence corresponds to a partial assignment
x ∈D where we assign xik = vk for k = 1, . . . , `, and x j = ∗ for all other indices j. The tree only contains
vertices corresponding to valid partial assignments. Each vertex except for the root (which is labelled
with the empty sequence) is connected to its parent, the vertex labelled with (i1,v1), . . . ,(i`−1,v`−1). It
is also connected to all vertices of the form (i1,v1), . . . ,(i`,v`),( j,w), where j = h((i1,v1), . . . ,(i`,v`)),
w ∈ [d], and P((i1,v1), . . . ,(i`,v`),( j,w)) is not false. That is, all vertices corresponding to valid partial
assignments which extend the current partial assignment by assigning a value to the variable whose index
is given by h. It is convenient to assume that the predicate P and the heuristic h take as input a string of
(index, value) pairs which describe value assignments to variables, rather than an element of D; if not,
converting between these representations can be done in time O(n). We will also assume that, for all
complete assignments, the predicate returns either true or false (as it should do).

The algorithm takes place within the Hilbert space H(n) = Cn+1⊗ (Cn+1⊗Cd+1)⊗n together with an
ancilla space. Each basis vector within H(n) represents a partial assignment described by a sequence as
above. The first register stores a level ` between 0 and n, representing the length of the sequence (the
number of non-∗’s in the assignment). Each of the next ` registers stores a pair (ik,vk) giving the index of
a variable (an integer between 1 and n) and the assignment to that variable (an integer between 0 and
d−1). Except during updates to the state, the remaining n− ` registers all contain the pair (0,∗). The
algorithm can easily be modified to use qubits if desired, rather than systems with dimension n+1 and
d +1, by encoding each subsystem in O(logn+ logd) qubits.

Let Uα,S, for S⊆ [d] and α ∈R, act on Cd+1 with basis {|∗〉, |0〉, . . . , |d−1〉} by mapping |∗〉 7→ |φα,S〉,
where

|φα,S〉 :=
1√

α|S|+1

(
|∗〉+

√
α ∑

i∈S
|i〉

)
.

We assume that, for any subset S⊆ [d] and any fixed α ∈ R, we can perform Uα,S and its inverse in time
O(1) each. Dependent on the gate set being used, we may not be able to exactly implement these operators
within this running time bound. But as we assume that d = O(1), they can always be approximately
implemented up to accuracy 1− ε in time poly log(1/ε) using the Solovay-Kitaev theorem [47], which
would multiply the running time of the overall algorithm by at most a polylogarithmic factor. The
running time of the Solovay-Kitaev approach has a polynomial dependence on d, but Uα,S could also
be implemented in time poly(logd, log1/ε) via the use of a quantum Fourier transform (see, e. g., [15,
Appendix D]); we omit the details. By applying Uα,S and its inverse we can perform the operation
I−2|φα,S〉〈φα,S|.

In order to use Algorithm 2, we need to implement the operators RA and RB. The implementation

THEORY OF COMPUTING, Volume 14 (15), 2018, pp. 1–24 16

http://dx.doi.org/10.4086/toc


QUANTUM-WALK SPEEDUP OF BACKTRACKING ALGORITHMS

Input: A basis state |`〉|(i1,v1)〉 . . . |(in,vn)〉 ∈H(n) corresponding to a partial assignment xi1 =
v1, . . . ,xi` = v`. Ancilla registers Hanc, Hnext, Hchildren, storing a tuple (a, j,S), where a ∈ {∗}∪ [d],
j ∈ {0, . . . ,n}, S⊆ [d], initialised to a = ∗, j = 0, S = /0.

1. If P(x) is true, return.

2. If ` is odd, subtract h((i1,v1), . . . ,(i`−1,v`−1)) from i` and swap a with v`.

3. If a 6= ∗, subtract 1 from `. (Now ` is even and (i`+1,v`+1) = (0,∗).)

4. Add h((i1,v1), . . . ,(i`,v`)) to j.

5. For each w ∈ [d]:

(a) If P((i1,v1), . . . ,(i`,v`),( j,w)) is not false, set S = S∪{w}.

6. If `= 0, perform the operation I−2|φn,S〉〈φn,S| on Hanc. Otherwise, perform the operation
I−2|φ1,S〉〈φ1,S| on Hanc.

7. Uncompute S and j by reversing steps 5 and 4.

8. If a 6= ∗, add 1 to `. If ` is now odd, add h((i1,v1), . . . ,(i`−1,v`−1)) to i` and swap v` with a.
(Now a = ∗ again.)

Algorithm 3: Implementation of the operator RA.

of RA using I−2|φα,S〉〈φα,S|, P and h is described in Algorithm 3. RB is similar, except that: step 1 is
replaced with the check “If P(x) is true or `= 0, return”; “odd” is replaced with “even” in steps 2 and 8;
and the check “If `= 0” is removed from step 6. The first of these changes is because RB should leave the
root of the tree invariant; and the last is because ` is always odd at that point in the modified algorithm, so
the check is unnecessary.

We now argue that Algorithm 3 correctly implements RA. Write x = (i1,v1), . . . ,(i`,v`) for the
partial assignment passed to the algorithm, and write x′ = (i1,v1), . . . ,(i`−1,v`−1) for the parent partial
assignment in the tree. The goal of the algorithm is to implement the operator

⊕
x∈A Dx defined in

Section 2. For each x ∈ A, Dx only acts on the subspace corresponding to x and its children. To implement
Dx, it is therefore sufficient to map the basis state corresponding to (i1,v1), . . . ,(i`,v`), and all the basis
states corresponding to (i1,v1), . . . ,(i`,v`),( j,w) for w ∈ [d], where j = h((i1,v1), . . . ,(i`,v`)) and ` is
even, to a (d +1)-dimensional subspace on which Uα,S can be implemented, and then returning to the
original subspace. This is precisely what Algorithm 3 does.

In more detail, the algorithm performs the following steps. First, it does nothing when x is marked,
corresponding to the definition of Dx. If x is not marked, the behaviour depends on whether ` is even
(corresponding to x ∈ A) or ` is odd (corresponding to x ∈ B). Define y by setting y = x if x ∈ A, and
y = x′ if x ∈ B. Then the algorithm implements an inversion about |ψy〉, which is split into 4 subparts as
follows.

THEORY OF COMPUTING, Volume 14 (15), 2018, pp. 1–24 17

http://dx.doi.org/10.4086/toc


ASHLEY MONTANARO

• Steps 2-3: Perform a map of the form |x〉 7→ |y〉|∗〉 for x ∈ A, and |x〉 7→ |y〉|w〉 for x ∈ B, where w
is the value of x at the h(x′)’th position, i. e., the most recent variable assignment that was made by
the backtracking algorithm.

• Steps 4-5: Determine the children of y.

• Step 6: Perform the operation I−2|ψy〉〈ψy| using the knowledge of the children of y.

• Steps 7-8: Uncompute junk and reverse the first map.

It can be verified that the algorithm implements the desired behaviour for all basis state inputs of the
form |`〉|(i1,v1)〉 . . . |(in,vn)〉 such that (i1,v1), . . . ,(i`,v`) is a valid path in the backtracking tree; we omit
the routine details. As the algorithm implements the operation RA =

⊕
x∈A Dx unitarily for all basis

states |x〉, it also implements RA correctly for all superpositions of basis states. Together with the similar
implementation of RB, this is enough to implement Algorithm 2. For each use of RA and RB the algorithm
uses O(1) auxiliary operations as claimed.

4 Improving the quantum walk algorithm?

We finish by addressing the question of how tight the bounds are which we have obtained on quantum
search in trees. It is clear that, given a tree with T vertices, we must have a lower bound of the form
Ω(
√

T ) for finding a marked vertex (otherwise, we could use the algorithm to solve the unstructured
search problem on T elements using o(

√
T ) quantum queries, which is impossible [12]). There are

several plausible ways in which the complexity of the algorithm presented here could be improved to get
closer to this bound. However, there appear to be some challenges to doing so in each of these cases.

1. Reduction of the dependence on the depth n. It is easy to see that, if we would like to apply the
quantum backtracking algorithm to general trees, there must be some dependence on the depth in
the running time. Indeed, consider a path on T vertices, which has depth T −1. Then, if the marked
vertex is the last one in the path, we require Ω(T ) steps to find it. More generally, it was shown by
Aaronson and Ambainis [1] that for each pair T and n, there is a tree containing T vertices and with
depth O(n) such that determining the existence of a marked vertex requires Ω(

√
T n) queries. This

holds even if we know the tree in advance and are allowed to perform arbitrary “local” operations
to search within it.

2. Reduction of the overhead for searching with multiple marked vertices. It would be interesting to
determine whether the search algorithm in Section 2.4 could be generalised to work with a similar
efficiency for an arbitrary number of marked vertices. The question of when one can convert a
quantum walk speedup for detecting a marked element to a speedup for finding a marked element
has been studied extensively. One recent example is work of Høyer and Komeili [34], which
describes an improved algorithm for quantum walk search on the torus; see [34] for many further
references.

But while it was shown by Szegedy [53] that the time to detect a marked element using a quantum
walk is at most the square root of the classical hitting time, it is not known whether the time to

THEORY OF COMPUTING, Volume 14 (15), 2018, pp. 1–24 18

http://dx.doi.org/10.4086/toc


QUANTUM-WALK SPEEDUP OF BACKTRACKING ALGORITHMS

find a marked element has the same scaling in general. Indeed, Krovi et al. [38] have described a
way (generalising previous results of [54, 41]) to modify the original quantum walk approach of
Szegedy to obtain a quadratic speedup for the search problem in the case where there is a unique
marked element. However, if there is more than one marked element, the running time of their
algorithm scales with a quantity they call the extended hitting time, which may be larger than the
hitting time. In any case, all of these algorithms assume that the graph is known in advance and the
initial state of the quantum walk algorithm corresponds to the stationary distribution of the random
walk. Neither of these assumptions applies here.

3. Reduction of the dependence on k to find one, or all, of k marked vertices. For the unstructured
search problem with k marked elements out of T , Grover’s algorithm can find a marked element
using O(

√
T/k) queries, which implies an algorithm which finds all marked elements in O(

√
T k)

queries. It would be natural to hope for a bound of a similar form for quantum search on trees,
e. g., O(

√
T n/k) to find a marked vertex and O(

√
T nk) to find all k of them. Unfortunately, it is

far from clear that this can be achieved.

Indeed, consider the following argument due to Alexander Belov. Imagine we have access to
an algorithm A which finds one of k > 1 marked vertices using o(

√
T n) queries, and consider

an arbitrary tree containing one marked leaf `0. Modify the tree by attaching a subtree of depth
O(logk) below that leaf containing k vertices, all of which are marked and are labelled such that `0
can be determined from their labels. Then, using A, we can find one of these vertices using o(

√
T n)

queries. Finding such a vertex enables us to find `0 with no additional queries, contradicting the
aforementioned Ω(

√
T n) lower bound [1]. However, this argument does not rule out the possibility

that some other approach could find all k marked vertices in, for example, O(
√

T nk) time.

Acknowledgements

I would like to thank Alexander Belov, Aram Harrow, Oded Regev, and several anonymous referees for
helpful comments on previous versions of this paper.

References

[1] SCOTT AARONSON AND ANDRIS AMBAINIS: Quantum search of spatial regions. Theory of
Computing, 1(4):47–79, 2005. Preliminary version in FOCS’03. [doi:10.4086/toc.2005.v001a004,
arXiv:quant-ph/0303041] 4, 5, 18, 19

[2] ERDEM ALKIM, LÉO DUCAS, THOMAS PÖPPELMANN, AND PETER SCHWABE: Post-quantum
key exchange – a new hope. In Proc. 25th USENIX Security Symp. (USENIX Security’16), pp.
327–343. USENIX Association, 2016. Available at IACR. 7

[3] ANDRIS AMBAINIS: Quantum search algorithms. ACM SIGACT News, 35(2):22–35, 2004.
[doi:10.1145/992287.992296, arXiv:quant-ph/0504012] 7

THEORY OF COMPUTING, Volume 14 (15), 2018, pp. 1–24 19

http://ieeexplore.ieee.org/document/1238194/
http://dx.doi.org/10.4086/toc.2005.v001a004
http://arxiv.org/abs/quant-ph/0303041
https://eprint.iacr.org/2015/1092
http://dx.doi.org/10.1145/992287.992296
http://arxiv.org/abs/quant-ph/0504012
http://dx.doi.org/10.4086/toc


ASHLEY MONTANARO

[4] ANDRIS AMBAINIS: Quantum walk algorithm for element distinctness. SIAM J. Comput., 37(1):210–
239, 2007. Preliminary version in FOCS’04. [doi:10.1137/S0097539705447311, arXiv:quant-
ph/0311001] 5

[5] ANDRIS AMBAINIS, ANDREW M. CHILDS, BEN W. REICHARDT, ROBERT ŠPALEK, AND

SHENGYU ZHANG: Any AND-OR formula of size N can be evaluated in time N1/2+o(1) on a
quantum computer. SIAM J. Comput., 39(6):2513–2530, 2010. Preliminary version in FOCS’07.
[doi:10.1137/080712167, arXiv:quant-ph/0703015] 7

[6] ANDRIS AMBAINIS AND RONALD DE WOLF: Average-case quantum query complexity. J. Phys.
A: Math. Gen., 34(35):6741–6754, 2001. Preliminary version in STACS’00. [doi:10.1088/0305-
4470/34/35/302, arXiv:quant-ph/9904079] 4

[7] ANDRIS AMBAINIS AND MARTINS KOKAINIS: Quantum algorithm for tree size estimation, with
applications to backtracking and 2-player games. In Proc. 49th STOC, pp. 989–1002. ACM Press,
2017. [doi:10.1145/3055399.3055444, arXiv:1704.06774] 4, 7

[8] OLA ANGELSMARK, VILHELM DAHLLÖF, AND PETER JONSSON: Finite domain constraint
satisfaction using quantum computation. In Proc. 27th Internat. Symp. Mathemat. Found. Comput.
Sci. (MFCS’02), pp. 93–103. Springer, 2002. [doi:10.1007/3-540-45687-2_7] 6

[9] PETER VAN BEEK: Backtracking search algorithms. In Handbook of Constraint Programming.
Elsevier, 2006. [doi:10.1016/S1574-6526(06)80008-8] 2, 5

[10] ALEKSANDRS BELOVS: Quantum walks and electric networks, 2013. [arXiv:1302.3143] 5, 8, 9,
10

[11] ALEKSANDRS BELOVS, ANDREW M. CHILDS, STACEY JEFFERY, ROBIN KOTHARI, AND

FRÉDÉRIC MAGNIEZ: Time-efficient quantum walks for 3-distinctness. In Proc. 40th Internat.
Colloq. on Automata, Languages and Programming (ICALP’13), pp. 105–122. Springer, 2013.
[doi:10.1007/978-3-642-39206-1_10, arXiv:1302.7316] 5, 9

[12] CHARLES H. BENNETT, ETHAN BERNSTEIN, GILLES BRASSARD, AND UMESH V. VAZIRANI:
Strengths and weaknesses of quantum computing. SIAM J. Comput., 26(5):1510–1523, 1997.
[doi:10.1137/S0097539796300933, arXiv:quant-ph/9701001] 18

[13] ETHAN BERNSTEIN AND UMESH V. VAZIRANI: Quantum complexity theory. SIAM J. Comput.,
26(5):1411–1473, 1997. Preliminary version in STOC’93. [doi:10.1137/S0097539796300921] 9

[14] GILLES BRASSARD, PETER HØYER, MICHELE MOSCA, AND ALAIN TAPP: Quantum amplitude
amplification and estimation. In SAMUEL J. LOMONACO, JR. AND HOWARD E. BRANDT, editors,
Quantum Computation and Information, volume 305 of Contemporary Mathematics, pp. 53–74.
AMS, 2002. [doi:10.1090/conm/305/05215, arXiv:quant-ph/0005055] 6

[15] CHRIS CADE, ASHLEY MONTANARO, AND ALEKSANDRS BELOVS: Time and space efficient
quantum algorithms for detecting cycles and testing bipartiteness. Quantum Inf. Comput., 18(1 &
2):18–50, 2018. [arXiv:1610.00581] 16

THEORY OF COMPUTING, Volume 14 (15), 2018, pp. 1–24 20

http://ieeexplore.ieee.org/document/1366221/
http://dx.doi.org/10.1137/S0097539705447311
http://arxiv.org/abs/quant-ph/0311001
http://arxiv.org/abs/quant-ph/0311001
http://ieeexplore.ieee.org/document/4389507/
http://dx.doi.org/10.1137/080712167
http://arxiv.org/abs/quant-ph/0703015
https://link.springer.com/chapter/10.1007/3-540-46541-3_11
http://dx.doi.org/10.1088/0305-4470/34/35/302
http://dx.doi.org/10.1088/0305-4470/34/35/302
http://arxiv.org/abs/quant-ph/9904079
http://dx.doi.org/10.1145/3055399.3055444
http://arxiv.org/abs/1704.06774
http://dx.doi.org/10.1007/3-540-45687-2_7
http://dx.doi.org/10.1016/S1574-6526(06)80008-8
http://arxiv.org/abs/1302.3143
http://dx.doi.org/10.1007/978-3-642-39206-1_10
http://arxiv.org/abs/1302.7316
http://dx.doi.org/10.1137/S0097539796300933
http://arxiv.org/abs/quant-ph/9701001
https://dl.acm.org/citation.cfm?doid=167088.167097
http://dx.doi.org/10.1137/S0097539796300921
http://dx.doi.org/10.1090/conm/305/05215
http://arxiv.org/abs/quant-ph/0005055
http://arxiv.org/abs/1610.00581
http://dx.doi.org/10.4086/toc


QUANTUM-WALK SPEEDUP OF BACKTRACKING ALGORITHMS

[16] NICOLAS J. CERF, LOV K. GROVER, AND COLIN P. WILLIAMS: Nested quantum search and
structured problems. Phys. Rev. A, 61(3):032303:1–14, 2000. [doi:10.1103/PhysRevA.61.032303,
arXiv:quant-ph/9806078] 5, 6

[17] ASHOK K. CHANDRA, PRABHAKAR RAGHAVAN, WALTER L. RUZZO, ROMAN SMOLEN-
SKY, AND PRASOON TIWARI: The electrical resistance of a graph captures its commute and
cover times. Comput. Complexity, 6(4):312–340, 1996. Preliminary version in STOC’89.
[doi:10.1007/BF01270385] 5, 9

[18] YUANMI CHEN AND PHONG Q. NGUYEN: BKZ 2.0: Better lattice security estimates. In Proc.
17th Internat. Conf. on the Theory and Application of Cryptology and Information Security (ASI-
ACRYPT’11), pp. 1–20. Springer, 2011. [doi:10.1007/978-3-642-25385-0_1] 7

[19] ANDREW M. CHILDS, RICHARD CLEVE, ENRICO DEOTTO, EDWARD FARHI, SAM GUTMANN,
AND DANIEL A. SPIELMAN: Exponential algorithmic speedup by a quantum walk. In Proc. 35th
STOC, pp. 59–68. ACM Press, 2003. [doi:10.1145/780542.780552, arXiv:quant-ph/0209131] 5

[20] RICHARD CLEVE, ARTUR EKERT, CHIARA MACCHIAVELLO, AND MICHELE MOSCA: Quantum
algorithms revisited. Proc. Royal Soc. A, 454(1969):339–354, 1998. [doi:10.1098/rspa.1998.0164,
arXiv:quant-ph/9708016] 8

[21] EVGENY DANTSIN, VLADIK KREINOVICH, AND ALEXANDER WOLPERT: On quantum ver-
sions of record-breaking algorithms for SAT. ACM SIGACT News, 36(4):103–108, 2005.
[doi:10.1145/1107523.1107524] 7

[22] MARTIN DAVIS, GEORGE LOGEMANN, AND DONALD LOVELAND: A machine program for
theorem-proving. Commun. ACM, 5(7):394–397, 1962. [doi:10.1145/368273.368557] 2

[23] MARTIN DAVIS AND HILARY PUTNAM: A computing procedure for quantification theory. J. ACM,
7(3):201–215, 1960. [doi:10.1145/321033.321034] 2

[24] RAFAËL DEL PINO, VADIM LYUBASHEVSKY, AND DAVID POINTCHEVAL: The whole is less than
the sum of its parts: Constructing more efficient lattice-based AKEs. In Proc. 10th Internat. Conf. on
Security and Cryptography for Networks (SCN’16), pp. 273 – 291. Springer, 2016. [doi:10.1007/978-
3-319-44618-9_15] 7

[25] NIKLAS EÉN AND NIKLAS SÖRENSSON: An extensible SAT-solver. In Proc. 6th Internat.
Conf. on Theory and Applications of Satisfiability Testing (SAT’03), pp. 502–518. Springer, 2003.
[doi:10.1007/978-3-540-24605-3_37] 2

[26] EDWARD FARHI, JEFFERY GOLDSTONE, SAM GUTMANN, JOSHUA LAPAN, ANDREW LUND-
GREN, AND DANIEL PREDA: A quantum adiabatic evolution algorithm applied to random instances
of an NP-complete problem. Science, 292(5516):472–475, 2001. [doi:10.1126/science.1057726,
arXiv:quant-ph/0104129] 7

[27] EDWARD FARHI, JEFFERY GOLDSTONE, SAM GUTMANN, AND MICHAEL SIPSER: Quantum
computation by adiabatic evolution. Technical report, MIT, 2000. [arXiv:quant-ph/0001106] 7

THEORY OF COMPUTING, Volume 14 (15), 2018, pp. 1–24 21

http://dx.doi.org/10.1103/PhysRevA.61.032303
http://arxiv.org/abs/quant-ph/9806078
https://dl.acm.org/citation.cfm?id=73062
http://dx.doi.org/10.1007/BF01270385
http://dx.doi.org/10.1007/978-3-642-25385-0_1
http://dx.doi.org/10.1145/780542.780552
http://arxiv.org/abs/quant-ph/0209131
http://dx.doi.org/10.1098/rspa.1998.0164
http://arxiv.org/abs/quant-ph/9708016
http://dx.doi.org/10.1145/1107523.1107524
http://dx.doi.org/10.1145/368273.368557
http://dx.doi.org/10.1145/321033.321034
http://dx.doi.org/10.1007/978-3-319-44618-9_15
http://dx.doi.org/10.1007/978-3-319-44618-9_15
http://dx.doi.org/10.1007/978-3-540-24605-3_37
http://dx.doi.org/10.1126/science.1057726
http://arxiv.org/abs/quant-ph/0104129
http://arxiv.org/abs/quant-ph/0001106
http://dx.doi.org/10.4086/toc


ASHLEY MONTANARO

[28] EDWARD FARHI AND SAM GUTMANN: Quantum computation and decision trees. Phys. Rev. A,
58(2):915–928, 1998. [doi:10.1103/PhysRevA.58.915, arXiv:quant-ph/9706062] 6

[29] EUGENE C. FREUDER AND ALAN K. MACKWORTH: Constraint satisfaction: An emerging
paradigm. In Handbook of Constraint Programming, pp. 13–27. Elsevier, 2006. [doi:10.1016/S1574-
6526(06)80006-4] 5

[30] MARTIN FÜRER: Solving NP-complete problems with quantum search. In Proc. 10th Latin Amer.
Symp. on Theoretical Informatics (LATIN’08), pp. 784–792. Springer, 2008. [doi:10.1007/978-3-
540-78773-0_67] 6

[31] NICOLAS GAMA, PHONG Q. NGUYEN, AND ODED REGEV: Lattice enumeration using extreme
pruning. In Proc. 29th Internat. Conf. on the Theory and Application of Cryptographic Techniques
(EUROCRYPT’10), pp. 257–278. Springer, 2010. [doi:10.1007/978-3-642-13190-5_13] 7

[32] CARLA P. GOMES, HENRY KAUTZ, ASHISH SABHARWAL, AND BART SELMAN: Satisfiability
solvers. In Handbook of Knowledge Representation, pp. 89–134. Elsevier, 2008. [doi:10.1016/S1574-
6526(07)03002-7] 2

[33] LOV K. GROVER: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev.
Lett., 79(2):325–328, 1997. [doi:10.1103/PhysRevLett.79.325, arXiv:quant-ph/9706033] 1

[34] PETER HØYER AND MOJTABA KOMEILI: Efficient quantum walk on the grid with multiple marked
elements. In Proc. 34th Symp. Theoret. Aspects of Computer Sci. (STACS’17), pp. 42:1–42:14.
DROPS, 2017. [doi:10.4230/LIPIcs.STACS.2017.42, arXiv:1612.08958] 18

[35] STACEY JEFFERY AND SHELBY KIMMEL: NAND-trees, average choice complexity, and effective
resistance, 2015. [arXiv:1511.02235] 7

[36] ALEXEI KITAEV: Quantum measurements and the abelian stabilizer problem, 1996. [arXiv:quant-
ph/9511026] 8

[37] DONALD E. KNUTH: Estimating the efficiency of backtrack programs. Mathematics of Computation,
29(129), 1975. [doi:10.1090/S0025-5718-1975-0373371-6] 5

[38] HARI KROVI, FRÉDÉRIC MAGNIEZ, MARIS OZOLS, AND JÉRÉMIE ROLAND: Quantum walks
can find a marked element on any graph. Algorithmica, 74(2):851–907, 2016. Preliminary version
in ICALP’10. [doi:10.1007/s00453-015-9979-8, arXiv:1002.2419] 5, 19

[39] TROY LEE, RAJAT MITTAL, BEN W. REICHARDT, ROBERT ŠPALEK, AND MARIO SZEGEDY:
Quantum query complexity of state conversion. In Proc. 52nd FOCS, pp. 344–353. IEEE Comp.
Soc. Press, 2011. [doi:10.1109/FOCS.2011.75, arXiv:1011.3020] 8

[40] INÊS LYNCE AND JOÃO P. MARQUES-SILVA: An overview of backtrack search satisfia-
bility algorithms. Annals of Mathematics and Artificial Intelligence, 37(3):307–326, 2003.
[doi:10.1023/A:1021264516079] 2

THEORY OF COMPUTING, Volume 14 (15), 2018, pp. 1–24 22

http://dx.doi.org/10.1103/PhysRevA.58.915
http://arxiv.org/abs/quant-ph/9706062
http://dx.doi.org/10.1016/S1574-6526(06)80006-4
http://dx.doi.org/10.1016/S1574-6526(06)80006-4
http://dx.doi.org/10.1007/978-3-540-78773-0_67
http://dx.doi.org/10.1007/978-3-540-78773-0_67
http://dx.doi.org/10.1007/978-3-642-13190-5_13
http://dx.doi.org/10.1016/S1574-6526(07)03002-7
http://dx.doi.org/10.1016/S1574-6526(07)03002-7
http://dx.doi.org/10.1103/PhysRevLett.79.325
http://arxiv.org/abs/quant-ph/9706033
http://dx.doi.org/10.4230/LIPIcs.STACS.2017.42
http://arxiv.org/abs/1612.08958
http://arxiv.org/abs/1511.02235
http://arxiv.org/abs/quant-ph/9511026
http://arxiv.org/abs/quant-ph/9511026
http://dx.doi.org/10.1090/S0025-5718-1975-0373371-6
https://doi.org/10.1007/978-3-642-14165-2_46
http://dx.doi.org/10.1007/s00453-015-9979-8
http://arxiv.org/abs/1002.2419
http://dx.doi.org/10.1109/FOCS.2011.75
http://arxiv.org/abs/1011.3020
http://dx.doi.org/10.1023/A:1021264516079
http://dx.doi.org/10.4086/toc


QUANTUM-WALK SPEEDUP OF BACKTRACKING ALGORITHMS

[41] FRÉDÉRIC MAGNIEZ, ASHWIN NAYAK, PETER C. RICHTER, AND MIKLOS SANTHA: On the
hitting times of quantum versus random walks. Algorithmica, 63(1–2):91–116, 2012. Preliminary
version in SODA’09. [doi:10.1007/s00453-011-9521-6, arXiv:0808.0084] 19

[42] FRÉDÉRIC MAGNIEZ, ASHWIN NAYAK, JÉRÉMIE ROLAND, AND MIKLOS SANTHA: Search
via quantum walk. SIAM J. Comput., 40(1):142–164, 2011. Preliminary version in STOC’07.
[doi:10.1137/090745854, arXiv:quant-ph/0608026] 5, 9

[43] SALVATORE MANDRÀ, GIAN GIACOMO GUERRESCHI, AND ALÁN ASPURU-GUZIK: Faster than
classical quantum algorithm for dense formulas of exact satisfiability and occupation problems.
New J. Phys., 18(7):073003, 2016. [doi:10.1088/1367-2630/18/7/073003, arXiv:1512.00859] 7

[44] JOÃO MARQUES-SILVA: The impact of branching heuristics in propositional satisfiability algo-
rithms. In Proc. 9th Portuguese Conf. on Artificial Intelligence: Progress in Artificial Intelligence
(EPIA’99), pp. 62–74. Springer, 1999. [doi:10.1007/3-540-48159-1_5] 3

[45] ASHLEY MONTANARO: Quantum walk speedup of backtracking algorithms, 2015.
[arXiv:1509.02374] 5

[46] DOMINIC J. MOYLETT, NOAH LINDEN, AND ASHLEY MONTANARO: Quantum speedup of the
traveling-salesman problem for bounded-degree graphs. Phys. Rev. A, 95(3):032323:1–10, 2017.
[doi:10.1103/PhysRevA.95.032323, arXiv:1612.06203] 7

[47] MICHAEL A. NIELSEN AND ISAAC L. CHUANG: Quantum Computation and Quantum Information.
Cambridge University Press, 2000. 16

[48] RENATO PORTUGAL, RAQUELINE AZEVEDO M. SANTOS, T. D. FERNANDES, AND DEMER-
SON N. GONÇALVES: The staggered quantum walk model. Quantum Information Processing,
15(1):85–101, 2016. [doi:10.1007/s11128-015-1149-z, arXiv:1505.04761] 10

[49] CLAUS-PETER SCHNORR AND MARTIN EUCHNER: Lattice basis reduction: Improved practical
algorithms and solving subset sum problems. Math. Program., 66(1–3):181–199, 1994. Preliminary
version in FCT’91. [doi:10.1007/BF01581144] 7

[50] UWE SCHÖNING: A probabilistic algorithm for k-SAT and constraint satisfaction problems. In
Proc. 40th FOCS, pp. 410–414. IEEE Comp. Soc. Press, 1999. [doi:10.1109/SFFCS.1999.814612]
7

[51] NEIL SHENVI, JULIA KEMPE, AND K. BIRGITTA WHALEY: Quantum random-walk search
algorithm. Phys. Rev. A, 67(5):052307:1–11, 2003. [doi:10.1103/PhysRevA.67.052307, arXiv:quant-
ph/0210064] 5

[52] LARRY STOCKMEYER: On approximation algorithms for #P. SIAM J. Comput., 14(4):849–861,
1985. [doi:10.1137/0214060] 6

[53] MARIO SZEGEDY: Quantum speed-up of Markov chain based algorithms. In Proc. 45th FOCS, pp.
32–41. IEEE Comp. Soc. Press, 2004. [doi:10.1109/FOCS.2004.53, arXiv:quant-ph/0401053] 5, 9,
18

THEORY OF COMPUTING, Volume 14 (15), 2018, pp. 1–24 23

https://dl.acm.org/citation.cfm?id=1496770.1496780
http://dx.doi.org/10.1007/s00453-011-9521-6
http://arxiv.org/abs/0808.0084
https://dl.acm.org/citation.cfm?doid=1250790.1250874
http://dx.doi.org/10.1137/090745854
http://arxiv.org/abs/quant-ph/0608026
http://dx.doi.org/10.1088/1367-2630/18/7/073003
http://arxiv.org/abs/1512.00859
http://dx.doi.org/10.1007/3-540-48159-1_5
http://arxiv.org/abs/1509.02374
http://dx.doi.org/10.1103/PhysRevA.95.032323
http://arxiv.org/abs/1612.06203
http://dx.doi.org/10.1007/s11128-015-1149-z
http://arxiv.org/abs/1505.04761
https://doi.org/10.1007/3-540-54458-5_51
http://dx.doi.org/10.1007/BF01581144
http://dx.doi.org/10.1109/SFFCS.1999.814612
http://dx.doi.org/10.1103/PhysRevA.67.052307
http://arxiv.org/abs/quant-ph/0210064
http://arxiv.org/abs/quant-ph/0210064
http://dx.doi.org/10.1137/0214060
http://dx.doi.org/10.1109/FOCS.2004.53
http://arxiv.org/abs/quant-ph/0401053
http://dx.doi.org/10.4086/toc


ASHLEY MONTANARO

[54] AVATAR TULSI: Faster quantum walk algorithm for the two dimensional spatial search. Phys. Rev.
A, 78(1):012310:1–6, 2008. [doi:10.1103/PhysRevA.78.012310, arXiv:0801.0497] 19

[55] GUOMING WANG: Efficient quantum algorithms for analyzing large sparse electrical networks.
Quantum Inf. Comput., 17(11 & 12):987–1026, 2017. [arXiv:1311.1851] 7, 12

[56] MINGYU XIAO AND HIROSHI NAGAMOCHI: An exact algorithm for TSP in degree-3 graphs via
circuit procedure and amortization on connectivity structure. Algorithmica, 74(2):713–741, 2016.
Preliminary version in TAMC’13. [doi:10.1007/s00453-015-9970-4, arXiv:1212.6831] 7

[57] MINGYU XIAO AND HIROSHI NAGAMOCHI: An improved exact algorithm for TSP in graphs
of maximum degree 4. Theory Comput. Syst., 58(2):241–272, 2016. Preliminary version in
COCOON’12. [doi:10.1007/s00224-015-9612-x] 7

AUTHOR

Ashley Montanaro
Reader in Quantum Computation
University of Bristol
Bristol, UK
ashley.montanaro bristol ac uk
http://people.maths.bris.ac.uk/~csxam/

ABOUT THE AUTHOR

ASHLEY MONTANARO graduated from the University of Bristol in 2008; his advisor was
Richard Jozsa. His academic interests include many aspects of quantum computing
and quantum information theory, with a particular focus on quantum algorithms and
quantum computational complexity. Outside of work, he enjoys writing self-referential
biographical entries.

THEORY OF COMPUTING, Volume 14 (15), 2018, pp. 1–24 24

http://dx.doi.org/10.1103/PhysRevA.78.012310
http://arxiv.org/abs/0801.0497
http://arxiv.org/abs/1311.1851
https://doi.org/10.1007/978-3-642-38236-9_10
http://dx.doi.org/10.1007/s00453-015-9970-4
http://arxiv.org/abs/1212.6831
https://doi.org/10.1007/978-3-642-32241-9_7
http://dx.doi.org/10.1007/s00224-015-9612-x
http://people.maths.bris.ac.uk/~csxam/
http://www.bristol.ac.uk/"
http://www.damtp.cam.ac.uk/people/r.jozsa/
http://dx.doi.org/10.4086/toc

	Introduction
	Results
	Techniques
	Other prior work
	Subsequent applications
	Organisation

	Quantum walks on trees
	Preliminaries
	The quantum walk algorithm
	Finding a marked vertex
	Search with a unique marked element
	Proof of technical claim for search with one marked element

	From quantum walks on trees to accelerating backtracking
	Improving the quantum walk algorithm?
	References

