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Abstract: We give tight cell-probe bounds for the time to compute convolution, multipli-
cation and Hamming distance in a stream. The cell probe model is a particularly strong
computational model and subsumes, for example, the popular word RAM model.

e We first consider online convolution where the task is to compute the inner product
between a fixed n-dimensional vector and a vector of the n most recent values from a
stream. One symbol of the stream arrives at a time and then each output symbol must
be computed before the next input symbol arrives.

e Next we show bounds for online multiplication of two n-digit numbers where one of
the multiplicands is known in advance and the other arrives one digit at a time, starting
from the lower-order end. When a digit arrives, the task is to compute a single new
digit from the product before the next digit arrives.

o Finally we look at the online Hamming distance problem where the Hamming distance
is computed instead of the inner product.

For each of these three problems, we give a lower bound of Q ((8/w)logn) time on
average per output symbol, where & is the number of bits needed to represent an input
symbol and w is the cell or word size. We argue that these bounds are in fact tight within the
cell probe model.
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1 Introduction

We consider the complexity of three related and fundamental problems: computing the convolution of
two vectors, multiplying two integers, and computing the Hamming distance between two strings. We
study these problems in an online or streaming context and provide matching upper and lower bounds in
the cell-probe model. Time lower bounds in the cell-probe model also hold for the popular word-RAM
model in which many of today’s algorithms are given.

The importance of these problems is hard to overstate. The integer multiplication and convolution
problems have played a central role in modern algorithm design and theory. The question of how to
compute the Hamming distance efficiently has a rich literature, spanning many of the most important
fields in computer science. Within the theory community, communication complexity based lower
bounds and streaming model upper bounds for the Hamming distance problem have been the subject
of particularly intense study [10, 35, 17, 19, 4, 5]. This previous work has however almost exclusively
focused on providing resource bounds either in terms of space or bits of communication rather than time
complexity.

We begin by introducing the problems and stating our results. In the following problem definitions
and throughout, we write [¢] to denote the set {0,...,q — 1}, where ¢ is a positive integer and a parameter
of the problem.

Problem 1.1 (Online convolution). For a fixed vector F € [¢]" of length n, we consider a stream in
which numbers from [¢] arrive one at a time. For each arriving number, before the next number arrives,
we compute the inner product (modulo ¢) of F and the vector that consists of the most recent n numbers
of the stream.

Theorem 1.2. In the cell-probe model with w bits per cell, for any positive integers q and n, and any
randomised algorithm solving the online convolution problem, there exist instances such that the expected
amortised time is Q((6 /w)logn) per arriving value, where 6 = [log, q|.

Problem 1.3 (Online multiplication). Given two numbers F,X € [¢"], where ¢ is the base and n is the
number of digits per number, we want to compute the n least significant digits of the product of F' and X,
in base g. We must do this under the constraint that only F is known in advance and the digits of X arrive
one at a time, starting from the lower-order end. When the i-th digit of X arrives, before the (i + 1)-th
digit arrives, we compute the i-th digit of the product.

Theorem 1.4. In the cell-probe model with w bits per cell, for any positive integers q and n, and any
randomised algorithm solving the online multiplication problem in base q, there exist instances such
that computing the n least significant digits of the product takes Q((8 /w)nlogn) expected time, where
= [log, q].

Problem 1.5 (Online Hamming distance). For a fixed string F of length n, we consider a stream in
which symbols from the alphabet [g] arrive one at a time. For each arriving symbol, before the next
symbol arrives, we compute the Hamming distance between F and the last n symbols of the stream.

Theorem 1.6. In the cell-probe model with w bits per cell, for any positive integers q and n, and any
randomised algorithm solving the online Hamming distance problem, there exist instances such that the
expected amortised time is Q((8/w)logn) per arriving value, where § = [min{log, g,log, n}|.
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Our Hamming distance lower bound also implies a matching lower bound for any problem to which
Hamming distance can be reduced. The most straightforward of these is online L; distance computation,
where the task is to compute the L; distance between a fixed vector of integers and the last n numbers in
the stream. A suitable reduction was shown in [26]. The expected amortised cell probe complexity for
the online L, distance problem is therefore also Q((0/w)logn) per output symbol.

One of our main technical contributions is to extend methods designed to give lower bounds on
dynamic data structures to the seemingly distinct field of online algorithms. Where 6 = w, for example, we
have Q(logn) lower bounds for all three problems. In particular for online multiplication and convolution,
these lower bounds match the best currently known offline upper bounds in the RAM model. As we
discuss in Section 1.1, this may be the highest lower bound that can be proved for all the problems we
consider without a further breakthrough.

In order to prove our lower bounds we show the existence of probability distributions on the inputs
for which we can prove lower bounds on the expected running time of any deterministic algorithm. By
Yao’s minimax principle [36] this immediately implies that for every (randomised) algorithm there is a
worst-case input such that the (expected) running time is equally high. Therefore our lower bounds hold
equally for randomised algorithms as for deterministic ones.

The lower bounds we give are also tight within the cell-probe model. This can be seen by application
of reductions described in [12, 6]. It was shown there that any offline algorithm for convolution [6] or
multiplication [12] can be converted to an online one with at most an O(logn) factor overhead. For
details of these reductions we refer the reader to the original papers. In our case, the same approach
also allows us to directly convert any cell-probe algorithm from an offline to online setting. An offline
cell-probe algorithm for convolution, multiplication or Hamming distance could first read the whole
input, then compute the answer. This takes O((8/w)n) cell probes. We can therefore derive online cell-
probe algorithms which take only O((8/w)nlogn) probes over n input symbols, hence O((6/w)logn)
(amortised) probes per output. This upper bound matches the new lower bounds we give. We summarise
this in the following corollary.

Corollary 1.7. The expected amortised cell-probe complexity of the online convolution, multiplication,
Hamming distance and L,-distance problems is ®((8/w)logn) per arriving value.

One consequence of our results is the first strict separation between the complexity of exact and
approximate pattern matching. Online exact matching can be solved in constant time [15] per new input
symbol and our new lower bound proves for the first time that this is not possible for Hamming distance.

Another consequence of our results is a new separation between the time complexity of online
exact matching and any convolution-based online pattern matching algorithm. Convolution has played
a particularly important role in the field of combinatorial pattern matching where many of the fastest
algorithms rely crucially for their speed on the use of fast Fourier transforms (FFTs) to perform repeated
convolutions. These methods have also been extended to allow searching for patterns in rapidly processed
data streams [6, 9].

1.1 Previous results and upper bounds in the RAM model

Almost all previous algorithmic work for exact Hamming distance computation has considered the
problem in an offline setting. Given a pattern P and a text 7 of length m and n respectively, the
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best current deterministic upper bound for offline Hamming distance computation is an O(ny/mlogm)
time algorithm based on convolutions [2, 22]. In [21] a randomised algorithm was given that takes
O((n/€?)1og?n) time which was subsequently modified in [18] to O((n/€3)logn). Particular interest
has also been paid to a bounded version of this problem called the k-mismatch problem. Here a bound &
is given and we need only report the Hamming distance if it is less than or equal to k. In [23], an O(nk)
algorithm was given that is not convolution based and uses O(1)-time lowest common ancestor (LCA)
operations on the suffix tree of P and 7. This was then improved to O(ny/klogk) time by a method that
combines LCA queries, filtering and convolutions [3].

The best time complexity lower bounds for online multiplication of two n-bit numbers were given in
the 1974 by Paterson, Fischer and Meyer. They presented an Q(logn) lower bound for multitape Turing
machines [31] and also gave an Q(logn/loglogn) lower bound for the bounded activity machine (BAM).
The BAM, which is a strict generalisation of the Turing machine model but which has nonetheless largely
fallen out of favour, attempts to capture the idea that future states can only depend on a limited part of the
current configuration. To the authors’ knowledge, there has been no progress on cell-probe lower bounds
for online multiplication, convolution or Hamming distance previous to the work we present here.

There have however been attempts to provide offline lower bounds for the related problem of
computing the FFT. In [28] Morgenstern gave an Q(nlogn) lower bound conditional on the assumption
that the underlying field of the transform is the complex numbers and that the modulus of any complex
numbers involved in the computation is at most one. Papadimitriou gave the same Q(nlogn) lower bound
for FFTs of length a power of two, this time excluding certain classes of algorithms including those
that rely on linear mathematical relations among the roots of unity [30]. This work had the advantage
of giving a conditional lower bound for FFTs over more general algebras than was previously possible,
including for example finite fields. In 1986, Pan [29] showed that another class of algorithms having a
so-called synchronous structure must require (nlogn) time for the computation of both the FFT and
convolution.

The fastest known algorithms for both offline integer multiplication and convolution in the word-
RAM model require O(nlogn) time by a well known application of a constant number of FFTs. As a
consequence our online lower bounds for these two problems match the best known time upper bounds
for the offline problem. As we discussed above, our lower bounds for all three problems are also tight
within the cell-probe model for the online problems.

The question now naturally arises as to whether one can find higher lower bounds in the RAM model.
This appears as an interesting question as there remains a gap between the best known time upper bounds
provided by existing algorithms and the lower bounds that we give within the cell-probe model. However,
as we mention above, any offline algorithm for convolution, Hamming distance or multiplication can be
converted to an online one with at most an O(logn) factor overhead [12, 6]. As a consequence, a higher
lower bound than Q(logn) for any of these problems would immediately imply a superlinear lower bound
for the offline version of the corresponding problem. This would be a truly remarkable breakthrough in
the field of computational complexity as no such offline lower bound is known even for the canonical
NP-complete problem SAT.

Our only alternative route to find tight time bounds would be to find better upper bounds for the
online problems. For the case of online multiplication at least, where the fastest online RAM algorithm
takes 0(10g2 n) time per arriving pair of digits, this has been an open problem since at least 1973 and has
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so far resisted our best attempts. On the other hand, for online Hamming distance, while our lower bound
is tight within the model, it is still distant from the time complexity of the fastest known RAM algorithms.
The best known online complexity is O(y/nlogn) time per arriving symbol [6]. An improvement of
the upper bound for Hamming distance computation to meet our new lower bound would also have
significant implications. A reduction that is now regarded as folklore tells us that any O(f(n)) time
algorithm for computing the Hamming distance between a pattern and all substrings of a text, assuming a
pattern of length n and a text of length 27, implies an O(f(n?)) time algorithm for multiplying binary
(nxn)-matrices over the integers. Therefore an O(logn)-time online Hamming distance algorithm would
imply an O(nlogn) offline Hamming distance algorithm, which would in turn imply an O(n?logn)-time
algorithm for binary matrix multiplication. Although such a result would arguably be less shocking than
a proof of a superlinear offline lower bound for Hamming distance computation, it would nonetheless be
a significant breakthrough in the complexity of a classic and much studied problem.

1.2 The cell-probe model

Our bounds hold in the cell-probe model which is a particularly strong computational model that
was introduced originally by Minsky and Papert [27] in a different context and then subsequently by
Fredman [13] and Yao [37]. A data structure in the cell-probe model consists of a set of memory cells,
each storing w bits. When presented with an update, the data structure reads and updates a number of
these cells. Similarly, when presented with a query, the data structure reads cells and from their contents,
returns the desired answer. These reads and updates are referred to as cell probes and the cost of an
update or query operation is simply the number of cells that are probed. As is typical, we will require that
the cell size w is at least of order logn bits. This allows each cell, or a constant number of cells, to hold
the address of any location in memory.

This abstraction makes the model very strong, subsuming for instance the popular word-RAM model.
In the word-RAM model certain operations on words, such as addition, subtraction and possibly multipli-
cation take constant time (see for example [16] for a detailed introduction). Here a word corresponds to a
cell. Any time lower bound in the cell-probe model with w-bit cells gives an asymptotically equal time
lower bound in the word-RAM model with w-bit words. This is because each constant-time operation in
the word-RAM model only probes a constant number of cells.

The generality of the cell-probe model makes it particularly attractive for establishing lower bounds
for dynamic data structure problems and many such results have been given in the past couple of decades.
The approaches taken had historically been based only on communication complexity arguments and the
chronogram technique of Fredman and Saks [14]. However in 2004, a breakthrough lead by Patrascu
and Demaine gave us the tools to seal the gaps for several data structure problems [34] as well as
giving the first Q(logn) lower bounds. The new technique is based on information-theoretic arguments
that we also deploy here. Pétrascu and Demaine also presented ideas which allowed them to express
more refined lower bounds such as trade-offs between updates and queries of dynamic data structures.
For a list of data structure problems and their lower bounds using these and related techniques, see
for example [32]. A new lower bound of Q ((logn/loglogn)?) was given by Larsen in 2012 for the
cell-probe complexity of performing queries in the dynamic range counting problem [24]. This result
holds under the natural assumptions of @(logn)-size words and polylogarithmic time updates and is
another exciting breakthrough in the field of cell-probe complexity. In a recent significant advance for
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the field, an Q((log'/?n/loglogn)?) time lower bound for the unweighted version of dynamic range
counting was given which holds even over [, [25].

1.3 Technical contributions

We use one of the most important techniques for proving data structure lower bounds called the information
transfer method of Patragcu and Demaine [33, 34]. For a pair of adjacent intervals of arriving values in
the stream, the information transfer is the set of memory cells that are written during the first interval and
read in the next interval. These cells must contain all the information from the updates during the first
interval that the algorithm needs in order to produce correct output in the next interval. If one can prove
that this quantity is large for many pairs of intervals then the desired lower bound follows. To do this we
relate the size of the information transfer to the conditional entropy of the output in the relevant interval.
The main task of proving lower bounds reduces to that of devising a hard input distribution for which
output symbols have high entropy conditioned on selected previous values of the input.

Although the use of information transfer to provide time lower bounds for data structure problems is
not new, applying the method to our new online setting has required a number of new insights. At the
simplest level, where a standard data structure problem has a number of different possible queries, in our
setting there is only one query which is to return the latest result as soon as a new symbol arrives. As a
result we provide a complete description of the information transfer method in a form which is relevant to
this different setting. At a more detailed mathematical level, perhaps the most surprising innovation we
present is a new relationship between the Hamming distance, vector sums and constant-weight binary
cyclic codes.

For the three problems we consider, our key contribution is the design of a fixed vector or string F
which together with some random distribution over possible input streams provide a lower bound for the
information transfer between successive intervals. For the convolution and multiplication problems we
show that a randomly picked F has a good chance of being suitable for proving the lower bounds. We also
give an explicit description of a particular F for which the lower bounds are obtained when the values of
the input stream are drawn independently and uniformly at random. The vector F is easy to describe and
naturally yields large conditional entropy of the output symbols for intervals of power-of-two lengths.

The results of the convolution and multiplication problems can be seen as a first step towards the lower
bound for the Hamming distance problem. Here the string F is derived by a sequence of transformations.
These start with binary cyclic codes and go via binary vectors with many distinct sums and an intermediate
string to finally arrive at F itself. The use of such a purposefully designed input departs from the closely
related work of the convolution and multiplication lower bounds and also from much of the lower bound
literature where simple uniform distributions over the whole input space often suffice.

The central fact that enabled a lower bound to be proven for the online convolution problem is that
the inner product between a vector and successive suffixes of the stream reveals a lot of information about
the history of the stream. Establishing a similar result for online Hamming distance problem appears,
however, to be considerably more challenging for a number of reasons. The first and most obvious is that
the amount of information one gains by comparing whether two, potentially large, symbols are equal is at
most one bit, as opposed to O(logn) bits for multiplication. The second is that the particularly simple
worst-case vector F' of the convolution problem greatly eased the resulting analysis. We have not been
able to find such a simple fixed string for the Hamming distance problem and our proof of the existence of
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a hard instance is non-constructive and involves a number of new insights, combining ideas from coding
theory and additive combinatorics.

When computing the Hamming distance there is a balance between the number of symbols being used
and the length of the strings. For large alphabets and short strings, one would expect a typical Hamming
distance to be close to the length of the string on random input symbols and therefore to provide very little
information about the random string itself. This suggests that the length of the strings must be sufficiently
long in relation to the alphabet size to ensure that the entropy of the output symbols is large, as required
by the information transfer method. At first glance, it is not immediately obvious that large entropy can
be obtained unless the fixed string F is exponentially larger than the alphabet size. This potentially poses
another problem for the information transfer method, namely that a word size w of order logn would
be much larger than § (the number of bits needed to represent a symbol), making a logn lower bound
impossible to achieve.

Our main technical contribution is to show that fixed strings of length only polynomial in the size
of the alphabet exist which provide output symbols of sufficiently high entropy. Such strings, when
combined with a suitable input distribution maximising the number of distinct Hamming distance output
sequences, give us the overall lower bound. We design a fixed string F' with this desirable property in
such a way that there is a one-to-one mapping between many of the different possible input streams and
the computed Hamming distances. This in turn implies large entropy. The construction of F' is non-trivial
and we break it into smaller building blocks, reducing our problem to a purely combinatorial question
relating to vectors sums. That is, given a relatively small set V of vectors of length m, how many distinct
vector sums can be obtained by choosing m vectors from V and adding them. We show that even if we
are restricted to picking vectors only from subsets of V, there exists a V such that the number of distinct
vector sums is m") . We believe this result is interesting in its own right. Our proof for the combinatorial
problem is non-constructive and probabilistic, using constant-weight cyclic binary codes to prove that
there is a positive probability of the existence of a set V with the desired property.

1.4 Organisation

In Section 2 we introduce notation and describe the setup for proving the lower bounds. In Section 3 we
prove the lower bounds for all three problems that we consider. The proofs hinge on a set of lemmas which
give lower bounds related to the entropy of the outputs of the problems considered. These lemmas are
proven separately in subsequent sections. In Section 4 we deal with the lemmas related to the convolution
problem, and in Section 5 we deal with the lemmas related to the multiplication problem. Finally, in
Sections 6, 7 and 8 we prove the lemma related to the Hamming distance problem.

2 Basic setup for the lower bounds
In this section we introduce notation and concepts that are used heavily in the lower bound proofs. For
an array, vector or string A of length n and i, j € [n], we write A[i] to denote the value at position i, and

where j > i, Ali, j] denotes the length-(j — i+ 1) subarray of A starting at position i. All logarithms are in
base two. We first introduce a unifying framework for the problems we consider.
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2.1 The framework

There is a fixed array F and an array S which is referred to as the stream. Both F and § are of length n
and over the set [¢] of integers, and we let 0 = [logg| denote the number of bits required to encode a
value from [g]. The value g, or alternatively 8, is a parameter of the problem. The problem is to maintain
S subject to an update operation UPDATE(x) which takes a symbol x € [¢], modifies S by appending x to
the right of the rightmost symbol S[n — 1] and removing the leftmost symbol S[0], and then outputs the
value of a function of F' and the updated S. In the convolution problem the output is the inner product
of F and S, that is Yc(,(F[i] - S[i]), and in the Hamming distance problem the output is the number of
positions i € [n] such that F[i] # S[i].

We let U € [¢]" denote the update array which describes a sequence of n UPDATE operations. That
is, for each 7 € [n], the operation UPDATE(U [¢]) is performed. We will usually refer to 7 as the arrival of
the value U[t]. Observe that just after the arrival 7, the values U[r + 1,n — 1] are still not known to the
algorithm. Finally, we let the length-n array A denote the outputs such that for 7 € [n], A[t] is the output of
UPDATE(U [t]).

In the multiplication problem we let F' denote one of the two operands to be multiplied, hence F is
fixed and known in advance by the algorithm. Specifically we let F[i] denote the i-th least significant
digit. We let U be the unknown operand so that U] is its 7-th least significant digit. Prior to the arrival of
the first digit U 0], the stream S contains only zeros. The output A[f] is the ¢-th digit in the product of F
and S, which is a function of F and U|0,] as required.

2.2 Hard distributions

Our lower bounds hold for any randomised algorithm on its worst case input. This will be achieved by
applying Yao’s minimax principle [36]. That is, we develop lower bounds that hold for any determinis-
tic algorithm on some random input. The basic approach is as follows: we devise a fixed array F' and
describe a probability distribution for n new values arriving in the stream S. We then obtain a lower bound
on the expected running time for any deterministic algorithm over these arrivals. Due to the minimax
principle, the same lower bound must then hold for any randomised algorithm on its own worst case input.
The amortised bound is obtained by dividing by n.

From this point onwards we consider an arbitrary deterministic algorithm running with some fixed
array F on a random input of n values. The algorithm may depend on F'. We refer to the choice of F* and
distribution on U as a hard distribution since it is used to show a lower bound.

2.3 Information transfer

The information transfer tree, denoted 7, is a balanced binary tree over n leaves. To avoid technicalities
we assume that n is a power of two. The leaves of T, from left to right, represent the arrivals ¢ from 0 to
n— 1. For a node v of T, we let £, denote the number of leaves in the subtree rooted at v. An internal
node v is associated with three arrivals, g, f; and t,. Here 1y is the arrival represented by the leftmost node
in subtree rooted at v, similarly #, = #o + ¢, — 1 is the rightmost such node and #; =y + ¢, /2 — 1 is in the
middle. That is, the intervals [tg,#;] and [t; + 1,2,] span the left and right subtrees of v, respectively. For
example, in Figure 1, the node labelled v is associated with the intervals [16,23] and [24,31].
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A/ A
01 23 45 6 7 8 9 10111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 1: An information transfer tree J with n = 32 leaves. For the node labelled v, the arrival times
to=16,t =23 and r, = 31.

We define the subarray U, = U to, ;] to represent the ¢, /2 values arriving in the stream during the
arrival interval [fp,#], and we define the subarray A, = A[t; + 1,#,] to represent the ¢, /2 output symbols
produced during the arrival interval [¢; + 1,1,].

We define U, to be the concatenation of U [0, (o — 1)] and U[(t2+ 1), (n — 1)]. That is, U, contains all
symbols of U except for those in U,. When ljv is fixed to some constant u, and U, is random, we write
H(A, | U, = u,) to denote the conditional entropy of A, under the fixed U,.

We define the information transfer of a node v of T, denoted J,, to be the set of memory cells ¢ such
that ¢ is probed during the interval [to,#;] and also probed in [t; + 1,%,]. The cells in the information
transfer J, therefore contains all the information about the values in U, that the algorithm uses in order to
correctly produce the output symbols A,,.

By adding up the sizes of the information transfers J, over the internal nodes v of T we get a lower
bound on the number of cell probes, that is a lower bound on the total running time of the algorithm.
To see this it is important to make the observation that a particular cell probe is counted for only once.
Suppose that the cell ¢ € J, for some node v. Let p be the first probe of ¢ in the arrival interval [¢; + 1,1,].
By including the cell ¢ € J, in the cell probe count we are in fact counting the probe p. Now observe that
p cannot be counted for in the information transfer J,; of any node v/ where V' is a proper descendant or
ancestor of v.

Since the concept of the size of the information transfer is central to the lower bound proofs, we
define as a shorthand I, = |J,| to denote the size of the information transfer.

Definition 2.1 (Large expected information transfer). A node v of J has large information transfer if

EfL] > k'6-€v7
w

where k is a constant that depends on the problem and input distribution.

Our aim is to show that a substantial proportion of the nodes of J have large information transfer. As
we will see in Section 3, this will be achieved by relating the size of the information transfer, 7, to the
entropy of the output symbols A,,.

3 Overall proofs of the lower bounds

In this section we give the overall proofs for our lower bound results. Consider any node v in J. Suppose
that U, is fixed arbitrarily but the symbols in U, are randomly drawn in accordance with the distribution
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on U, conditioned on the fixed value of U,. This induces a distribution on the output symbols A,. If
the entropy of A, is large, conditioned on the fixed U,, then any algorithm must probe many cells in
order to correctly produce the output symbols A,, as it is only through the information transfer J, that
the algorithm can know anything about U,. We will begin in Section 3.1 by making this claim precise
by giving a problem independent upper bound on H(A, | U, = u,) in terms of J,. We will then give
lower bounds on H(A, | U, = &,) in Section 3.2 for each problem we consider. The proofs of these
entropy lower bounds form the heart of our contributions and are deferred to Sections 4 onwards. In
Section 3.3, we combine the upper and lower bounds on the entropy to show that many nodes of T have
large information transfer. Finally, we calculate our final lower bounds in Section 3.4 by summing over
all large information transfer nodes as discussed in Section 2.3 above.

3.1 An upper bound on the entropy

Towards showing that high conditional entropy H (A, | U, = u,) implies large information transfer we
use the information transfer J, to describe an encoding of the output symbols A,. The following lemma
gives a direct relationship between the size of the information transfer J, and the entropy. The lemma was
originally stated in [34] but for completeness we restate it here in our notation and provide a full proof.

Lemma 3.1 (Pédtrascu and Demaine [34]). Under the assumption that the address of any cell can be
specified in w bits, for any node v of the information transfer tree J, the entropy

HA, | U, =1,) < w+2w-E[I, |U,=1)].

Proof. The expected length of any encoding of A,,, conditioned on U,, is an upper bound on the conditional
entropy of A,. We use the information transfer J, as an encoding in the following way. For every cell
c € J, we store the address of ¢, which takes at most w bits under the assumption that a cell can hold the
address of any cell in memory. We also store the contents of ¢, which takes w bits. In total this requires
2w - I, bits. We will use the algorithm, which is fixed, and the fixed values of l7v as part of the decoder
to obtain A, from the encoding. Since the encoding is of variable length we also store the size of the
information transfer, which requires at most w additional bits.

In order to prove that the described encoding of A, is valid we now describe how to decode it. First
we simulate the algorithm on the fixed input U, from the first arrival of U [0] until just before the first
value in U, arrives. We then skip over all input symbols in U, and resume simulating the algorithm from
the beginning of the interval where A, is computed until the last value in A, has been obtained. For every
cell being read, we check if it is contained in information transfer J, by looking up its address in the
encoding. If it is in the information transfer, its contents is fetched from the encoding. If not, its contents
is available from simulating the algorithm on the fixed input symbols. Observe that it suffices to store
only the first time a cell in the information transfer is probed as the decoder remembers every cell it has
already accessed. O

3.2 Lower bounds on the entropy

Lemma 3.1 above provides a direct way to obtain a lower bound on the expected size of the information
transfer given a lower bound on the conditional entropy H (A, | U, = u,). To show that a node has large
information transfer we introduce the following definition.
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Definition 3.2 (High-entropy node). A node v in 7 is a high-entropy node if there is a positive constant
k such that for any fixed u,, N
HA,|U,=u,) >k-8-4,.

To put this bound in perspective, note that the maximum conditional entropy of A, is bounded by
the entropy of U,, which is at most 8 - (¢,/2) and obtained when the values of U, are independent and
uniformly drawn from [g]. Thus, the conditional entropy associated with a high-entropy node is the
highest possible up to some constant factor. Establishing high-entropy nodes is the main contribution of
this paper and the results are given in the following lemmas.

Lemma 3.3. For the convolution problem, suppose that U is chosen uniformly at random from [q|",

where q is a prime. For any v € T, at least a (1 —1/q)-fraction of all F € [q|" have the property that v is
a high-entropy node.

The proof of the above lemma is given in Section 4 and relies on properties of Toeplitz matrices over
a finite field of ¢ elements. The proof does not give explicit descriptions of fixed arrays F for which nodes
are high-entropy nodes. In the proof of the next lemma however, we show that there exists a particular
array F for which high-entropy nodes are obtained. This F is a 0/1-array and is easy to describe: zeroes
everywhere except for at power-of-two positions from the right hand end. The proof is given in Section 4.

Lemma 3.4. For the convolution problem there exists a fixed array F € [q|" such that when U is chosen
uniformly at random from [q]", all v € T are high-entropy nodes.

Before we give the lemmas concerning online multiplication, recall that in this problem there is a
fixed operand F' multiplied with an operand U for which digits arrive one at a time.

Lemma 3.5. For the online multiplication problem, suppose that the operand U is chosen uniformly
at random from [q"). For any v € T, at least half of all operands F € [q"'] have the property that v is a
high-entropy node.

The proof of Lemma 3.5 is given in Section 5. Similarly to the convolution problem we also give an
explicit description of a number F for which high-entropy nodes are obtained. This number resembles
the fixed array that we described above for the convolution problem. The proof of the next lemma is also
given in Section 5.

Lemma 3.6. For the online multiplication problem there exists a fixed operand F € [q"] such that when
U is chosen uniformly at random from [q"|, all v € T are high-entropy nodes.

Finally, for the Hamming distance problem we show that there exists an F and distribution for U such
that sufficiently many nodes are high-entropy nodes. The proof of the next lemma is rather involved and
is given over Sections 6 to 8.

Lemma 3.7. For the Hamming distance problem there exists a hard distribution with a fixed F and
random U such that any node v € T for which £, > h-+/n is a high-entropy node, where h is a positive
constant.

In the proof of Lemma 3.7 we demonstrate that there exists a very specific set of strings such that
when F is drawn randomly from this set, there is a non-zero probability of picking an F for which many
nodes are high-entropy nodes. Unlike the convolution and multiplication problems, the distribution for U
is not uniform over of all strings [¢]".
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3.3 Lower bounds on the information transfer

In the previous section we gave a series of lemmas saying that for all three problems we consider, there
are instances for which many nodes of T are high-entropy nodes. In this section we combine these results
with the entropy upper bound of Lemma 3.1 to show that many nodes have large information transfer.
The following lemmas match the lemmas of the previous section. We start with the convolution problem.

Lemma 3.8. For the convolution problem where both F and U are chosen uniformly at random from
[q]", and q is a prime, every v € T has large information transfer.

Proof. By combining Lemmas 3.1 and 3.3 we have that for any v € T under fixed U,, at least half of all
F € [q]" imply that v is a high-entropy node, that is,

k-8-0, < w+2w-E[I, | U, =),
where k is the constant from Definition 3.2 of a high-entropy node. Rearranging terms gives

~ 0-4, 1
Elv Uv: v > -
1 | ] > 5

N |

We remove the conditioning by taking expectation over U, under a random U. When F is chosen
uniformly at random from [¢]" we therefore have

0-4,
4k -w

E[L] >

9

I

hence v has large information transfer. O

Similarly to Lemma 3.8, we combine Lemmas 3.1 and 3.4 to obtain the following property for the
case where F is a fixed string and not randomly chosen.

Lemma 3.9. For the convolution problem there exists a hard distribution where F is fixed and U is
chosen uniformly at random from [q]", such that every v € T has large information transfer.

Proof. Similarly to the proof of Lemma 3.8 we combine Lemmas 3.1 and 3.4 to obtain, for all v e T
under fixed U,

~ o-t 1
E[lv‘Uv:uv] > 2]{-\/‘;_5’
where k is the constant from Definition 3.2 of a high-entropy node. The conditioning is removed by
taking expectation over U, under a random U'. O

The proofs of the following two lemmas, in which we establish large information transfer for the
multiplication problem, are similar to the proofs of the previous two lemmas, only that we here combine
Lemma 3.1 with Lemmas 3.5 and 3.6, respectively.

Lemma 3.10. For the online multiplication problem where both operands are chosen uniformly at
random from "], every v € T has large information transfer.
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Lemma 3.11. For the online multiplication problem there exists a fixed operand in [q"] such that when
the other operand is chosen uniformly at random from [q"], every v € T has large information transfer.

Finally, large information transfer is also established for the Hamming distance problem. The proof of
the next lemma is identical to the proof of Lemma 3.9, only that we combine Lemma 3.1 with Lemma 3.7
instead, and restrict the nodes v to those for which ¢, is greater than a constant times /.

Lemma 3.12. There exists a hard distribution for the Hamming distance problem such that every v € T
for which £, > h-\/n has large information transfer, where h is a positive constant.

3.4 Obtaining the cell-probe lower bounds

Now that we have established large information transfer for sufficiently many nodes of T we are ready to
prove the lower bounds of Theorems 1.2, 1.4 and 1.6.

For both the convolution and multiplication problems, large information transfer has been established
for every node v of T, whereas for the Hamming distance problem, large information transfer has only
been established where ¢, > h-\/n where h is a positive constant. In order to unify the presentation of
the proofs we restrict the summation of I, to nodes for which ¢, > h-/n. Let V denote this set of nodes.
We have
k-6-¢, k'-8-n-logn

Yol =)YERL >) , (3.1

veV ] veV veV w w

where k is the constant from Definition 2.1 of large information transfer and K’ is a new suitable constant.
The first equality follows by linearity of expectation and the second inequality follows by Lemmas 3.8
to 3.12, respectively. The last equality follows from the fact that

Z ¢, € O(nlogn).
veT
ly=h\/n

E > E

YA

veT

Since the running time is bounded by the number of cell probes we have from Equation (3.1) that
the expected running time for any deterministic algorithm solving the convolution, multiplication or
Hamming distance problem, respectively, on n random input symbols is

Q<5-n-logn> '
w

By Yao’s minimax principle, as discussed in Section 2, this implies that any randomised algorithm on its
worst case input has the same lower bound on its expected running time. The amortised time per arriving
value is obtained by dividing the running time by n. This concludes the proofs of Theorems 1.2, 1.4
and 1.6.

4 Hard distributions for the convolution problem
In this section we prove Lemmas 3.3 and 3.4, that is we show that there are instances to the convolution

problem such that the conditional entropy of the output symbols A, is large, where all input symbols but
U, are fixed.
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We begin by proving Lemma 3.3 because the proof is straightforward and the description of the hard
distribution is simple: pick the input symbols U uniformly at random from [¢]". As to the choice of F we
only argue that a large fraction of all length-n arrays have the desired entropy lower bound. In Section 4.2
we will specify a particular F' with this property, which will lead to a proof of Lemma 3.4.

4.1 Entropy lower bound over all arrays F

We now prove Lemma 3.3. Let v be any internal node of T and let ¢, € [n] denote the arrival time of
U,[0]. Let £ = ¢,/2. For i € [¢], the i-th output in A, can be broken into two sums A; and f~l,~, such that
Al = Ai+ ﬁi, where
A= Z Fln—1—((+i)+j]-UJj])
€[4

is the contribution from the alignment of F with U,, and A is the contribution from the alignments that
do not include U,. Hence A is constant under fixed U We define M to be the £ x ¢ matrix with entries
Mpy(i,j) =F[n—1—(£+i)+ j]. Thatis,

Fln—¢—1] F[n—(+0] Fn—L(+1] --- F[n—2]

Fln—¢-2] Fln—¢—1] Fn—£(+0] --- F[n—3|
My = Fn—¢-3] Fn—(-2] Fn—{(—-1] --- F[n—4

F[n:—2€] F[n—:2€+1] F[n—:2£+2] F[n—zﬁ—l]

Observe that Mry is a Toeplitz matrix (or “upside down” Hankel matrix) since it is constant on each
descending diagonal from left to right. It follows that

U,[0] Ao
u[1] Ay

Meox | = @.1)
uie-11)  \a.,

which describes a system of linear equations. Since output symbols are given modulo g, where ¢ is
assumed to be a prime, we operate in the finite field Z/gZ. It has been shown in [20] that for any ¢,
out of all the ¢ x ¢ Toeplitz matrices over a finite field of g elements, a fraction of exactly (1 —1/q) is
non-singular. This fact was actually already established in [11] almost 40 years earlier but incidentally
reproved in [20]. Thus, a (1 — 1 /q)-fraction of all F has the property that all the ¢ input symbols in U,

can be uniquely determined from the output symbols in A,. Since the induced distribution for U, under
any fixed U, is the uniform distribution on [4]°, the conditional entropy

0-4,
2 Y

H(A, | U, =u,) =

where 8 = [log, ¢|. This concludes the proof of Lemma 3.3.
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Figure 2: Three alignments of F' = K, and the stream S: (D) the last value of U, has just arrived, @ half of
the output symbols in A, have been outputted, and () all output symbols in A, have been outputted.

4.2 Entropy lower bound with a fixed array F

We now prove Lemma 3.4 by demonstrating that it is possible to design a fixed array F such that for all
nodes v € 7, a large portion of the values in U, can be uniquely determined from the output symbols A,,.
Since U is drawn uniformly at random from [g]", this implies large entropy of the output symbols A,.
The fixed array F that we consider consists of stretches of Os interspersed by 1s. The distance between
two succeeding 1s is an increasing power of two, ensuring that for half of the alignments of " and § in the
arrival interval where A, is computed, all but exactly one element of U, are simultaneously aligned with a
0 in F, hence not contributing to the outputted inner product of F and S. We define K, € [2]" such that

K,[0], K, [1],...,Ky[n—1] = ...000000000100000000000000010000000100010110,
where commas between elements on the right hand side have been omitted, or formally,

. 1, ifn—1—iisapower of two;
Kyli] = )
0, otherwise.

The hard distribution for Lemma 3.4 is F' = K}, and the input symbols U drawn uniformly at random from
[q]".

Let v be any node of T and consider Figure 2 which illustrates three alignments of F' and S, denoted
O, @ and @), respectively. At alignment (D, the last value of U, has just arrived in the stream. At
alignment (2), half of the output symbols in A, have been outputted. At alignment (3), all output symbols
in A, have been outputted. The key observation is that between alignment 2) and 3), exactly one input
symbol x of U, is aligned with a 1 in F, hence x can be uniquely determined from the corresponding
output symbol. Thus, over all output symbols A,, a total of ¢, /4 values of U, can be determined, implying
that the entropy of A, must be at least J - ¢, /4, where & = [log, q]. We now formalise this reasoning.

Using the definition of £ = ¢, /2 and the matrix Mg, above, recall that entry Mg (i, j) = F[n— 1 —
(£+1i)+ j]. Thus, MF,(i, j) = 1 if and only if

n—1—(n—1—(l+i)+j) = l+i—]

is a power of two. Since ¢ is a power of two it follows that for row i € {¢/2,...,{ — 1} there can be at
most one entry with the value 1. More precisely,

1 ifj=i,

0 otherwise.

Mry(i, j) = {
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10, ty
Un—1] Un—=2]Un-3] --- U, -+ U2] U[1] U[0]
| .
X |Fln—1] F[n—2] F[n-3] - ... F[2] F[1] F[0]
[Aln—1] Aln—2] Ap—3] --- A, L A[2] A[L] A0]
30, 3y + 1y

Figure 3: An illustration of A = U x F. Digits of U arrive one at a time, where U [0] is the low-order digit
that arrives first.

From the system of linear equations in Equation (4.1) it follows that for i € {¢/2,...,0—1}, A; = U,[i].
Since the induced distribution for U, under any fixed U, is the uniform distribution on [¢]°, the conditional
entropy

0-4,

~ /
H(A, |U,=u,) = ~-log,q > 4

2
where 8 = [log, ¢|. This concludes the proof of Lemma 3.4.

5 Hard distributions for the multiplication problem

In this section we prove Lemmas 3.5 and 3.6, that is we show that there are instances of the online
multiplication problem such that the conditional entropy of the output symbols A, is large, where all
input symbols but U, are fixed. For the purposes of proving a lower bound we assume that all digits of
the operand F' are available at any time whereas the digits of the operand U arrive one at a time. Figure 3
illustrates U x F, where U[0] and F|0] are the least significant digits and the product A is capped at n
digits.

The following property of multiplying binary numbers was established by Paterson, Fischer and
Meyer [31]. The lemma is stated in our notation, but the translation from the original notation of [31] is
straightforward.

Lemma 5.1 (Corollary of Lemma 5 in [31]). Suppose g =2. Let v be any node of T and fix the digits of
U, arbitrarily. At least half of all F[0,¢, — 1] € [q]" (first ¢, digits of F ) have the property that any value
of A, can arise from at most four distinct U,,.

Although Lemma 5.1 applies only to binary numbers, it naturally scales to any ¢ that is a power of
two. To see this, observe that the property holds for any v, and a sequence of digits in base g is after all
just a bit sequence.

Corollary 5.2. Lemma 5.1 holds for any q that is a power of two.
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We use the above corollary to prove Lemma 3.5. Let v be any node of T. At least half of all F € [¢"]
have the property that U, can be determined up to a set of four possible values given the output symbols
in A,. Since the induced distribution for U, under any fixed ﬁv is the uniform distribution on [q]Z (the
digits of U, ), the conditional entropy

~ /2 S0
H(Av|Uv:’/~‘v)Zlog2<q4 ) > 2\/_2’

where 6 = log, ¢g. This concludes the proof of Lemma 3.5.

In order to prove Lemma 3.11 we specify a fixed F' which together with the uniform distribution for
U gives the desired entropy lower bound. Similarly to the array K, from Section 4.2 we define K, to
be the largest number in [¢"] such that the i-th bit in the binary expansion of K, , is 1 if and only if i is
a power of two (starting with i = 0 at the lower-order end). Thus, the binary expansion of K, , is the
reverse of Kjog, 4. For example, suppose that ¢ = 16 (i. €., hex) and n = 8. Then K} g = 10116 in base
16, or 65,814 in decimal, since the binary expansion of K¢ g is

0000000000000001 00000001 00010110 .
N N N N N
0 0 0 1 0 1 1 6

Paterson, Fischer and Meyer [31] also studied the multiplication of binary numbers where one operand
is fixed. The following property was given in [31], here translated into our notation.

Lemma 5.3 (Lemma 1 of [31]). Suppose q =2 and F = K, . Let v be any node of T and fix the digits of
U, arbitrarily. Any value of A, can arise from at most two distinct U,,.

Similarly to Lemma 5.1 and from our definition of K, ,, the above lemma scales to any g that is a
power of two.

Corollary 5.4. Lemma 5.3 holds for any q that is a power of two.

We use the above corollary to prove Lemma 3.6 where F' = K, ,,. Let v be any node of J. The value of
U, can be determined up to a set of two possible values given the output symbols in A,. Now suppose that
F has this property. Since the induced distribution for U, under any fixed U, is the uniform distribution
on [g]* (the digits of U, ), the conditional entropy

- /2 S-¢
H(Av|Uv:ﬁv)210g2<q2 ) > 2V—1,

where 8 = log, g. This concludes the proof of Lemma 3.6.

6 Hard distribution for the Hamming distance problem

In this section we prove Lemma 3.7, that is we show that there are instances of the Hamming distance
problem such that the conditional entropy of the output symbols A, is large, where all input symbols but
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U, are fixed. We will show this property for nodes in the upper part of the tree T, namely nodes v such
the number of leaves ¢, is greater than some constant times /7.

Unlike the hard distributions we gave for the convolution and multiplication problems, we will not
give an explicit description of the array F' for which the Hamming distance lower bound holds. We
only show the existence of such an F. Further, for both the convolution and multiplication problems we
showed that the lower bound was obtained for a majority of all F', where U was chosen uniformly at
random from [¢]". For the Hamming distance problem we will instead show that there exists an F and
some particular subset of [¢]" such that when U is drawn uniformly at random from this subset, we obtain
the desired lower bound.

6.1 Terminology, choice of ¢ and rounding issues

We will refer to the input arrays, including F and U, as strings, and the set [¢] as the alphabet. The values
of the alphabet are referred to as symbols.

Unlike the convolution and multiplication problems, for the Hamming distance problem there is no
benefit in having an alphabet of size greater than n, the length of F. Our hard distribution is constructed
such that with an alphabet of size g, n has to be at least ¢°. From now on we assume that n > ¢>. Observe
that whenever n is polynomial in ¢, the number of bits needed to represent a symbol is 0 € @(logn).

We will often treat various roots of integers as integers. For example, we may say that some string of
length ¢*/2 is the concatenation of ¢ smaller strings, each of length ¢'/2. This is of course only possible
whenever these numbers are integers, which is not the case for arbitrary g. One could overcome this
problem by adjusting the values with appropriate floors and ceilings, as well as introducing padding
symbols where necessary, but this would without doubt clutter the presentation. We have decided to keep
it simple by treating any root of any integer as an integer, and assuming that everything adds up nicely.
This is only to keep the presentation clean and it should be obvious from the context that this has no
impact on the asymptotic behaviour.

6.2 The overall structure of the fixed string F

Recall the definition of the array K, € {0, 1}" from Section 4.2 which consists of Os everywhere except at
power-of-two positions from the right-hand end. A hard distribution for the convolution problem was
given by setting F to K, and choosing U uniformly at random from [g]". Recall Figure 2 which illustrates
why we chose this hard distribution: for each output symbol in the second half of A,, that is between the
alignments marked ) and () in the figure, exactly one input symbol of U, is aligned with a 1 in F and all
other input symbols of U, are aligned with 0. Thus, the second half of U, can be uniquely determined
from the output symbols A,,.

To show a lower bound for the Hamming distance problem we devise a string F that resembles K.
First we introduce an auxiliary string R of length ©(¢%/?). We will use r = (¢/2)*/? as a shorthand for
the length of R. We will give the details of R later but will highlight an important property of it below. We
obtain F from K, by first replacing each 0 by a symbol that we denote x. The symbol x will never occur
in the stream, hence will always generate a mismatch. We then replace every length-r substring starting
at a 1 with a copy of R. Any 1 that is closer than r positions from the right-hand end of F is replaced by a
*-symbol instead. Figure 4 illustrates F.
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Figure 4: The string F has a copy of R starting at each position n — 1 — i where i > |R] is a power of two.
All other positions have the symbol * which only occurs in ' and not in the stream.

r r

‘ HamArray(R,U’) |
r+1

Figure 5: HamArray(R,U’) contains the Hamming distances between R and every length-r substring of
U’ as R slides along U’.

6.3 Properties of the string R and Hamming arrays

The string R will play the same role as the value 1 in K, did for the convolution problem, namely it
will allow us to uniquely determine symbols from U. To see how, we first introduce the notion of a
Hamming array, illustrated in Figure 5. For a string U’ of length 2r, we write HamArray(R,U’) to denote
the length-(r + 1) array such that for i € [r+ 1], HamArray (R, U’)[i] is the Hamming distance between
R and U'[i,i+r—1]. That is, HamArray(R,U’) contains the Hamming distances between R and every
length-r substring of U’.

To see the resemblance with a 1 in K},, we give the following lemma. The proof is non-trivial and
deferred to Section 7.3. A high-level explanation of the lemma is given immediately after its statement.

Lemma 6.1. There exists a constant k > 0 such that for any r there is a length-r string R € [q]” where
g = 2r*3 such that

‘ { HamArray(R,U") | U’ € [q]zr} ‘ > 4.

The lemma says that there is a string R such that over all possible U’ of length 2|R|, one can obtain
¢®"") distinct Hamming arrays. Since there are only ¢% possible values of U’, this means that a non-
negligible fraction of all U’ can be put in one-to-one correspondence with Hamming arrays. Thus, as
symbols in U, slide past an R in a similar fashion to symbols in U, sliding past a 1 in K}, in the hard
distribution for the convolution problem, we can infer a substantial portion of the symbols of U, from the
output symbols A, , hence obtain large entropy. We formalise this in the next section and explain how the
lower bound is obtained.

6.4 The hard distribution and obtaining the lower bound

Relying on Lemma 6.1 above we will now describe a hard distribution for the Hamming distance problem
and use it to prove Lemma 3.7, which is the purpose of Section 6.
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Figure 6: Three alignments of F' and the stream S: (D the last value of U, has just arrived, ) half of the
outputs in A, have been outputted, and (3 all outputs in A, have been outputted. The string U, is here the
concatenation of U7, ...,U,, € Ug, where m = {,/(4r).

Given a string R € [g]", we let Ug C [g]*" be any largest set of length-(2r) strings such that for any
two distinct strings U{, U} € Ug,

HamArray(R,U{) # HamArray(R,U}).

To uniquely specify a string in Ug we need log, |Ug| bits. By Lemma 6.1 we have that there exists an R
such that log, |Ug| € ®(rlogg).

For the hard distribution we use F' from above with an R that has the properties of Lemma 6.1. The
input U is given by concatenating n/2r strings drawn independently and uniformly at random from Ug.

Similarly to Figure 2 we can now illustrate how strings from Ug slide past R during the second
half of the output symbols in A,, where v is any node of T such that ¢, > h-/n. Here h is the positive
constant from Lemma 3.7. We defer picking the value of / until later. For any such node, we have that
¢, > h-r because we assumed that n > ¢> and the definition of r implies that ¢ > r2. In Figure 6 we
have illustrated U, as the concatenation of random strings Uj, .. .,U,, drawn from Ug, where m = £,/ (4r).
Between alignments @) and () in the figure, the second half of the substrings U/ of U, slide in turn past R,
and from the outputs in A, we can infer HamArray (R, U/) for each such U/. By construction of Uy this
allows us to uniquely determine the strings U;. Thus, over all outputs A,, a total of approximately /2
substrings U/ of U, can be completely determined. We pick above & to be sufficiently large so that, even
compensating for border cases, the number of substrings U/ of U, that can be determined is always at least
one. This implies that the entropy of A, must, by Lemma 6.1, be at least @((m/2) - rlogq) = ©(¥, - 5),
where 6 = [log, g|. This concludes the proof of Lemma 3.7.

7 A string with many different Hamming arrays

In this section we prove Lemma 6.1, that is we show that there exists a string R which gives many different
Hamming arrays. This is arguably the most technically detailed part of our lower bound proofs. To recap,
we claim that for any r there exists a string R € [¢]" with ¢ = 2r%/3 which permits at least ¢*” distinct
Hamming arrays when combined with every string in [g]?", where k is a constant. Next we describe the
overall structure of an R with this property.
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p2o1

/A

R [0l *[O|*[a]~[x[2[ | [2[2[3[ * 3 ][ |*[4]=[|»[[5[5]+|6[6] <[6]6[ [7[ <[7[7]*[8[*[8[*| -~ _[<[=[*[-[]
et e et et et et et Ut N——

Po P1 P2 P3 P4 Ps P6 p7 2 P(p2-1)

Figure 7: An example of the string R of length » = >, which is the concatenation of the p? strings
Po,--- Pu215 where p; € {‘k,i}u.
-— U —

@ R [0][<Jo[[[[[r[2[x]<[2[2[3[=[3]x]x[<[[4l]]]=[5[5[ [6[6]I6]6[ [7[ <[7[7]*[8[~[8[
W—/WW—/WW—/W

Po P1 P2 P3 P4 51 P6 P7 P8
@ R [*[O]+[[O]x[[t]+[[2x[[22[3[<[3[|*[»[[4] » [*[+[[5]5[ x|616[ - 616] - [7]x [7[7][8[<[8[]
N —N——N— N ———N———N— N ——— N — —N— —
Po 1 P2 P3 P4 P5 P6 P P8

U’ [ofelele[ofofefe[e[o[o[eleo]o[o[e[e[e[o[ofele[e]o[ofele[o[o[Blee[e[o[ofe[e[o[o[Zfe]e[o[ofo

U [ole[o[o[eJ0[o[e]e[o[o[e[e]o[e[t[[o]e[o[2fe[o]o[o]¢[o[o[e[[B[e[e[o[o[5[]o[e[[T[o[e[o[[>

Figure 8: Setting symbols of U’ renders a large set of possible Hamming distance outputs.

7.1 The structure of R

To shorten notation it will be convenient to introduce the variable j as a shorthand for /3. Hence R has
length r = p? and ¢ = 2. The string R is constructed by concatenating u? substrings, each of length 4.
For i € [u?] we let p; denote the i-th substring of R, that is

R = pop1---Ppu2-1)-

Each substring p; can only contain symbols from the set {x, i}, where « is the special symbol that will not
occur in the stream. Therefore, the total number of distinct symbols in R is at most >+ 1 < ¢ as claimed.
Figure 7 illustrates an example of R.

The purpose of the substrings p; is to support a reduction from vector addition to Hamming arrays
that we explain next.

7.2 Vector sums and Hamming arrays

Before we describe the full reduction in the following section we begin by giving some high level
intuition. We first introduce some notation. Let V = {vo,vi,v2...v,2_;} be a multi-set of vectors where
v; € {0, 1}*. We can define a correspondence between the length-u substring p; of R and the i-th vector
v; as follows. The j-th symbol of p; equals i if the j-th component of v; is 1 and x otherwise. For example,
P2 = 2xx22 from Figure 7 corresponds to the vector v, = (1,0,0,1,1).

We will now see that this correspondence between vectors in V and substrings of R can be used to
encode elementwise sums of vectors in V in the Hamming array for R. Consider the string U’ € [¢]*"
in Figure 8 as an illustrative example. Here the string U’ contains the other special symbol that we
introduce, denoted ¢. This symbol does not occur in R, hence will always mismatch. In the figure we see
that all positions of U’ have the symbol ¢, except for three positions where the symbols are 0, 5 and 7,
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respectively. The positions holding these symbols are chosen such that in the first alignment between R
and U’, marked (D), the symbols 0, 5 and 7 sit immediately after py, ps and p7 in R, respectively. As R
slides p steps to the right towards the alignment marked @), the symbols 0, 5 and 7 of U’ will generate
matches whenever they are aligned with their corresponding symbols in R. Thus, fori € {1,...,u},

HamArray(R,U")[i] = r— (vo+vs+v7)[i],

where (vo + vs + v7)[i] is the i-th component of the sum of the vectors vy, vs and v;. In other words, from
HamArray(R,U’)[1, 1] we can uniquely determine the sum v + vs +v7. As shorthand we will think of
HamArray(R,U’)[1, 1] as encoding the sum vy +vs +v7.

The idea above can be repeated by populating U’ with more symbols from [u?]. As an example we
have added the symbols 1 and 2, and another copy of 5 to U’, which is the string denoted U” in the figure.
As R slides another p steps to the right, HamArray (R, U")[u + 1,2u] encodes (uniquely specifies) the
sum vq + vy + vs.

Observe that as we populate U’ with symbols, positions become blocked. For example, we could
not have added symbols to U’ to define an alternate U” which instead encodes the sum v + v, + v4 in
HamArray (R, U")[p + 1,2u] since the position where the 4 would have to be set is already occupied
by a 5. Observe however that setting symbols of U” as above generates matches only in the intended
length-p window of the Hamming array. Thus, we have full control of which vector sums we want to
encode, under the constraint that positions become blocked, limiting the choice of vectors.

The conclusion thus far is that vector sums have a direct correspondence with the Hamming array.
Next we take the ideas from above further and show that if there exists a pool of u? vectors such that
many different vector sums can be obtained when adding u vectors from the pool, then the number of
distinct HamArray(R,U’) one can obtain is large. This would prove Lemma 6.1.

7.3 The string R and the proof of Lemma 6.1

Before we state the next lemma which will be used to prove Lemma 6.1, we introduce some basic
notation that we will use when reasoning about multisets of vectors. Let X be a multiset of vectors.
Consider an arbitrary ordering of the elements of X and refer to X[i] as the i-th element of X. We
use the term sub-multiset of X to denote any multiset obtained from X by removing zero or more
elements. We will use the notation C to denote the sub-multiset relation so that we have, for example,
{1,1,4,5,5} C {1,1,1,4,4,5,5,7,8}. We can now introduce the required lemma.

Lemma 7.1. For any p > 40 such that L — 1 is a prime, there exists a multiset V of vectors from {0,1}*
such that |V| = u(u — 1) and for any sub-multiset V' C 'V of size at least (63/64)|V

‘{w1+~--+wu | {Wl,u-,Wu}EV’}‘ > pW/10),

The lemma is proved in Section 8 and we will now use it to construct an R that proves Lemma 6.1.
The introduction of a sub-multiset V' in the lemma above is to reflect the fact that positions of U’ get
blocked as we populate it with symbols. We will see next that at any step, a fraction of at most 1/64 of
the u? vectors are blocked.
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Suppose that V = {vy, ..., v,(u—1)} is a multiset of length-u vectors over {0, 1} with the properties
of Lemma 7.1. That is, we assume that ¢t > 40 and p — 1 is a prime. Again as discussed in Section 6.1,
we can always tweak relevant values in order to meet this criteria.

The string R is simply chosen such that for i € [u(u — 1)], the substring p; corresponds to the vector v;
of V as described at the start of Section 7.2. Fori € {u(u —1),...,(u> —1)}, the substring p; = {x}* as
we will ignore these substrings anyway. In order to show that this R proves Lemma 6.1 we will populate
a length-(2r) vector U’ with symbols and show how length-pt subarrays of HamArray(R,U’) correspond
to vector sums of 1 vectors chosen arbitrarily from a sub-multiset of V. The process for constructing a
string U’ is as follows:

1. Set all 2u? positions of U’ to the symbol ©.
2. Align R with the left half of U’ as illustrated in Figure 5.

3. Let V/ CV be the set of vectors that are not blocked. Initially this means that V' =V but as we
return to this step, V' shrinks.

4. Choose any sub-multiset {wr,...,w, } C V' and set their corresponding positions in U’ accordingly.
For any v; € {w,...,wy} the corresponding position in U’ is the one which is currently aligned
with the position immediately after substring p; in R. This position is set to the symbol i.

5. Slide R by u steps along U’. Over these alignments, HamArray (R, U’) uniquely specifies the vector
sum wy +---+wy.

Steps 3-5 are referred to as a round.

6. Repeat from Step 3 for a total of (1 — 1)/64 rounds. Observe that a total of u(u —1)/64 =
(1/64)|V| vectors become blocked, hence |V’| is always at least (63/64)|V]|.

7. Slide R by one single step along U'. This will offset all previously blocked vectors and allow us to
start over again at Step 3 as if no vectors are blocked. This is repeated until this step is reached for
the p-th time. At that point the offsetting of blocked vectors has cycled and previously set positions
of U’ are yet again blocked.

Populating U’ according to the procedure above means that R is shifted by a total of

po(u—1)/64-u+(u—1) = @£ /64—u*/64+pu—1 < r

steps. Over these steps we have by Lemma 7.1 that for each length-u subarray of HamArray(R,U’) that
corresponds to a vector sum, there is a choice of at least pt(#/19) distinct values. Thus, when u > 40, the
number of distinct HamArray(R,U’) is at least

(u—1)/64 (r/656)
(u(u/10)>”” /60 S 8/656) _ <r<1/3>) 1096) i

where k = 1,/1968. This concludes the proof of Lemma 6.1.
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8 Vector sets with many distinct sums

In this section, we prove Lemma 7.1. We first rephrase the lemma slightly by introducing some notation.
For any multiset V' of vectors from {0, 1}*, we define

Sum(V') = [{wi+-+wy | {wi,....wy, } CV'}

to be the size of the set of distinct vector sums one can obtain by summing the vectors of size-u sub-
multisets of V. Addition is elementwise and over the integers. Lemma 7.1 says that there exists a multiset
V of vectors from {0,1}* such that |[V| = p(u — 1) and for any sub-multiset V' C V of size at least
(63/64)|V|, we have that Sum (V') > pu(#/10),

Our approach will be an application of the probabilistic method. Specifically, we will show that when
the vectors of V are chosen independently and uniformly at random from {0, 1}*, the expected value,

E[Sum(V)] > (1~ 1)),

| =

Thus, there must exist a V such that Sum(V) > (u — 1)#/%) /2. Given such a V, we then show that for
every sub-multiset V' C (V) > pw/10),

8.1 Vectors and codes

We now describe a connection between vectors and codes which we will use in our analysis to lower
bound the number of distinct vector sums, Sum(V') that can be obtained from a vector set V. We will
require the following lemma from the field of Coding Theory. The lemma is tailored for our needs and is
a special case of “Construction II” in [1]. For our purposes, a binary constant-weight constant-weight
binary cyclic code can be seen simply as set of bit strings (codewords) with two additional properties: the
first is that all codewords have constant Hamming weight u, i. e., they have exactly ut 1s, and the second
property is that any cyclic shift of a codeword is also a codeword.

Lemma 8.1 ([1]). For any u > 4 such that u — 1 is a prime and any odd y € [, there is a binary
constant-weight constant-weight binary cyclic code with (L — 1)¥ codewords of length u(u — 1) and
Hamming weight 1 such that any two codewords have Hamming distance at least 2(11 — ).

Let C be the binary code that contains all codewords of length p(u — 1) with Hamming weight p.
We can think of a codeword of C representing a size-U sub-multiset X T V such that the i-th vector of V
(under any enumeration of the elements of V) is in X if and only if position i of the codeword is 1. That
is, C represents all possible sub-multisets of V' of size . To shorten notation, we refer to ¢ € C asboth a
codeword and a sub-multiset of y vectors from V.

Suppose that 4 >4 and p — 1 is a prime. We let C C Chbea cyclic code of size (1 — 1), where y is
any odd integer in the interval [u /9, 1 /8], such that the Hamming distance between any two codewords
in C is at least 7u /4. The existence of such a C is guaranteed by Lemma 8.1 since 2(u — u/8) =7u /4.
Observe that every codeword of C has Hamming weight u.
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For ¢ € C we define the ball, Ball(c) to be the set of bit strings in C at Hamming distance at most
/16 from c. Formally,

Ball(c) = {¢ | ¢ € C and Hamming distance between ¢ and ¢ is at most 11/16} .

Observe that the |C| balls are all disjoint since the Hamming distance between any two codewords in
C is at least than 7p /4. In particular, for any ¢ € C, Ball(c) NC = {c}. We have that for any ¢ € C, using
the fact (7)) < (ae/b),

et =) (1)< ("= ™

For ¢ € C we write sum(¢) to denote the vector in [t + 1]# obtained by adding the p vectors in the
vector set ¢, that is sum(¢) vector sum of the vectors represented by c.

Towards proving Lemma 7.1 we will show that when the vectors of V are chosen uniformly at random,
we expect more than half of all |C| balls to have the property that for every ¢ in the ball, sum(c) can only
be obtained by summing vectors from that ball.

8.2 Choosing the vectors in V

So far we have not discussed the choice of vectors in V. Initially we consider choosing the vectors
independently and uniformly at random from {0, 1 }**. We will first show that

E [Sum(V)] > %(N — 1)),

then we will fix V and show that this fixed V has the property of Lemma 7.1.

Consider any two distinct c¢1,c; € C and the corresponding balls, Ball(c;) and Ball(c;) which
are disjoint subsets of C. For any ¢ € Ball(c;) and ¢ € Ball(cz), we now analyse the probability
that sum(c;) = sum(cz). From the definitions above it follows that ¢; and ¢; must differ on at least
Tu/4—2(u/16) > u positions, implying that the two vector sets ¢; and ¢; have at most /2 vectors in
common, thus at least (/2 of the vectors in ¢; are not in ¢;. Let wy, ... W(w/2) denote an arbitrary choice
of /2 of those vectors. For i € [] we can write the i-th component of sum(cy ) as

sum(c1)[i] = wi[i] + - +w o [i] +x[i],
where the vector x does not depend on wy, ..., w(y /7). In order to have sum(c;) = sum(cz) we must have
wili] + -+ wip)li] = sum(cz)[i] —x[i]

for each i € [u]. Since the vectors are picked independently and uniformly at random from {0, 1}*, the
most likely value of w[i] +- -+ +wy ) [i] is 1 /4. The probability that this sum equals /4 is

o smai=$) = () ()< )"
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where the inequality follows from the fact that for any a, ( y ) < 2%/./a. Thus, the probability that

af
sum(cy) = sum(cy), that is sum(cy)[i] = sum(cy)[i] for all i € [,LZL], is
RN _
Pr(sum(ci) = sum(cz)) < (([;) 1/2> - (%) #/2. &1

For two distinct ¢, ¢y € C, we define the indicator random variable

I ) 0 if sum(c;) = sum(cz) for some ¢; € Ball(c;) and ¢; € Ball(c2),
c1,02) = .
b 1 otherwise.

Taking the union bound over all ¢; € Ball(c;) and ¢; € Ball(c;), and using the probability bound in
Equation (8.1), we have

—u/2
Pr(I(c1,c2) = 0) < |Ball(cy)| - [Ball(cs)]| - (%) g (8.2)
W\ 2(R/16) /N —1/2
<(i) (3)

1 n/8
<(w) -
For any ¢ € C, we now define the indicator random variable

I'ey) = 0 ifI(c1,c2) =0 for some c; € C\{c1},
1 otherwise.

That is, I'(c;) = 1 if and only if sum(c;) # sum(c;) for every ¢ € Ball(c) and every ¢; in a different
ball. In other words, each sums of codewords, sum(cy) corresponding to a ¢; € Ball(cy) is unique to this
ball. It is possible, however that sum(c;) = sum(c;) if ¢; is in the same ball as ¢;. We say that Ball(c;)
is good if and only if I'(¢;) = 1.

Taking the union bound over all ¢; € C, and using Equation (8.2) and the fact that |C| < uH/3) e
have

Pr(l'(c;)=0) < Y Pr(I(c1,c2) =0)
ceC\{c1}

1\ H/8 1 \H/8
<) <u ()

By linearity of expectation we have that the expected number of good balls is

/ C]
E !Zl(c)] > >

ceC

N —

The conclusion is that there is a multiset V of vectors for which at least |C|/2 balls are good. As
|C| > (1 — 1)®#/) it then follows that as required,

Sum(V) > %(,u—l)(“/g).
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8.3 Many distinct sums for subsets of V

Let V be a multiset of vectors such that the number of good balls is at least |C|/2 in accordance with the
conclusion of the previous section. As observed above, Sum(V) > (u — 1)*/%) /2. It remains to show
that for any sub-multiset V' C V of size (63/64)|V |, sum(V’) is also large.

Over all codewords in C, seen as bit strings, the total number of 1s is |C|u. Since C is cyclic, the
number of codewords in C that have a 1 in position i € [|V|] is the same as the number of codewords that
have a 1 in position j, for any j € [|V|]. Thus, for each one of the |V| positions there are exactly |C|u/|V|
codewords in C with a 1 in that position.

Let V' C V be of size (63/64)|V|. Let J be the set of |V |/64 positions that correspond to the vectors
of V that are not in V. We will now modify the codewords of C as follows. For each j € J and codeword
¢ € C we set c[j] to 0. The total number of 1s across all codewords in C is therefore reduced from |C|u
by exactly

V| [Clu _ IClu
64 V| 64

The number of codewords of C that have lost (/16 or more 1s is therefore at most

WW/g:g
64 / 16 4 °

Let C' C C be the set of codewords ¢ that have lost fewer than /16 1s and for which Ball(c) is good.
Since there are at least |C|/2 good balls, |C'| > |C|/4.

Let the code C” be obtained from C’ by replacing, for each codeword in C’, every removed 1 with
a 1 at some other arbitrary position that is not in J. Thus, every ¢” € C" has Hamming weight y and
belongs to the good ball Ball(c"), where ¢ was obtained from ¢ € C'. Hence |C”| = |C'| > |C| /4. Every
codeword of ¢’ € C” corresponds to a sub-multiset of V of size yt. Crucially, this sub-multiset only
contains vectors from the sub-multiset V’. Further, from the definition of a good ball we have that each
codeword in C” corresponds to a sub-multiset of V/ with a distinct vector sum. As |C”| > |C|/4 we have
that at least |C|/4 distinct vector sums can be obtained by adding u vectors from V'. Thus,

Sum(V’) > %(u— 1)H/9) > gy (w/10)

when & > 40. This completes the proof of Lemma 7.1.
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