A Strong XOR Lemma for Randomized Query Complexity
by Joshua Brody, Jae Tak Kim, Peem Lerdputtipongporn, and Hariharan Srinivasulu
Theory of Computing, Volume 19(11), pp. 1-14, 2023
Bibliography with links to cited articles
[1] Andrew Bassilakis, Andrew Drucker, Mika Göös, Lunjia Hu, Weiyun Ma, and Li-Yang Tan: The power of many samples in query complexity. In Proc. 47th Internat. Colloq. on Automata, Languages, and Programming (ICALP’20), pp. 9:1–18. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2020. [doi:10.4230/LIPIcs.ICALP.2020.9, arXiv:2002.10654, ECCC:TR20-027]
[2] Yosi Ben-Asher and Ilan Newman: Decision trees with boolean threshold queries. J. Comput. System Sci., 51(3):495–502, 1995. Preliminary version in CCC’95. [doi:10.1006/jcss.1995.1085]
[3] Shalev Ben-David and Eric Blais: A new minimax theorem for randomized algorithms. In Proc. 61st FOCS, pp. 403–411. IEEE Comp. Soc., 2020. [doi:10.1109/FOCS46700.2020.00045]
[4] Shalev Ben-David and Eric Blais: A tight composition theorem for the randomized query complexity of partial functions. In Proc. 61st FOCS, pp. 240–246. IEEE Comp. Soc., 2020. [doi:10.1109/FOCS46700.2020.00031, arXiv:2002.10809]
[5] Shalev Ben-David, Mika Göös, Robin Kothari, and Thomas Watson: When is amplification necessary for composition in randomized query complexity? In Proc. 24th Internat. Conf. on Randomization and Computation (RANDOM’20), pp. 28:1–16. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2020. [doi:10.4230/LIPICS.APPROX/RANDOM.2020.28, arXiv:2006.10957]
[6] Shalev Ben-David and Robin Kothari: Randomized query complexity of sabotaged and composed functions. Theory of Computing, 14(5):1–27, 2018. Preliminary version in ICALP’16. [doi:10.4086/toc.2018.v014a005, arXiv:1605.09071, ECCC:TR16-087]
[7] Eric Blais and Joshua Brody: Optimal separation and strong direct sum for randomized query complexity. In Proc. 34th Comput. Complexity Conf. (CCC’19), pp. 29:1–17. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019. [doi:10.4230/LIPIcs.CCC.2019.29, arXiv:1908.01020]
[8] Andrew Drucker: Improved direct product theorems for randomized query complexity. Comput. Complexity, 21(2):197–244, 2012. Preliminary version in CCC’11. [doi:10.1007/s00037-012-0043-7, arXiv:1005.0644, ECCC:TR10-080]
[9] Russell Impagliazzo, Ran Raz, and Avi Wigderson: A direct product theorem. In Proc. 9th IEEE Conf. Structure in Complexity Theory (SCT’94), pp. 88–96. IEEE Comp. Soc., 1994. [doi:10.1109/SCT.1994.315814]
[10] Rahul Jain, Hartmut Klauck, and Miklos Santha: Optimal direct sum results for deterministic and randomized decision tree complexity. Inform. Process. Lett., 110(20):893–897, 2010. [doi:10.1016/j.ipl.2010.07.020]
[11] Marco Molinaro, David P. Woodruff, and Grigory Yaroslavtsev: Beating the direct sum theorem in communication complexity with implications for sketching. In Proc. 24th Ann. ACM–SIAM Symp. on Discrete Algorithms (SODA’13), pp. 1738–1756. SIAM, 2013. [doi:10.1137/1.9781611973105.125]
[12] Marco Molinaro, David P. Woodruff, and Grigory Yaroslavtsev: Amplification of one-way information complexity via codes and noise sensitivity. In Proc. 42nd Internat. Colloq. on Automata, Languages, and Programming (ICALP’15), pp. 960–972. Springer, 2015. [doi:10.1007/978-3-662-47672-7_78, ECCC:TR15-031]
[13] Noam Nisan, Steven Rudich, and Michael E. Saks: Products and help bits in decision trees. SIAM J. Comput., 28(3):1035–1050, 1998. Preliminary version in FOCS’94. [doi:10.1137/S0097539795282444]
[14] Ronen Shaltiel: Towards proving strong direct product theorems. Comput. Complexity, 12(1):1–22, 2003. Preliminary version in CCC’01. [doi:10.1007/s00037-003-0175-x, ECCC:TR01-009]